Foreword

Thank you very much for purchasing PI7800, PI7600 Family Frequency Inverters. This family is designed based on the experience of POWTRAN Company in the professional manufacture and sale of the products, and suitable for general-purpose machine, fan/pump drive, high frequency drive and heavy load machine.
This User's Manual provides the users with the instructions on the installation, parameter setting, fault diagnosis, routine maintenance and necessary precautions. Please read the Manual carefully before the installation of the product in order to ensure that it can be correctly installed and operated.

This User's Manual includes PI7800, PI7600, the general purpose control and special purpose control. The general purpose control ha F, G, M and H; The special purpose control has S, T and Z :
F: FLOW LOAD
G:GENERAL LOAD
M: MEIDDLE LOAD
H: HEAVY LOAD.
S: TEXDRIVE.
T: WINDLASS.
Z: JETDRIVE.
Please contact the local dealers or directly contact our company.
Please keep this user's manual in good condition, for it will be helpful to the repair, maintenance, and applications in the future.
For information about other product, please visit our website:
http://www.powtran.com.

CONTENTS

Section I. Inspection and Safety Precautions 1
Section II. Installation \& Standby Circuit 3
Section III. Operating keyboard 14
Section IV. Test running 19
Section V. Function parameter table 21
Section VI. Function Parameter Description 34
Section VII. Fault Diagnosis and Solutions 88
Section VIII. Standard Specifications 90
Section IX. Maintenance. 103
Section X. Options 105
Appendix 1. PI7000 RS485 communication protocol 109
Appendix 2. PG Instruction 120
Appendix 3. Converter water supply controller instruction 123

Section I. Inspection and Safety Precautions

POWTRAN PI7800/7600 frequency inverters have been tested and inspected before leaving the manufacturer. Before unpacking the product, please check if its package is damaged due to careless transportation, and if the specifications and type of the product complies with the order. Please contact the supplier of POWTRAN products if any problems are found.

1-1. Inspection after Unpacking

※ Inspect that the contents are complete (one PI7000/7100 frequency inverter, one Operation Manual).
※ Check the nameplate on the side of the frequency inverter to ensure that the product you have received is right the one you ordered.
Instructions on name plate: (giving $132 \mathrm{~kW} / 380 \mathrm{~V}$ as example)

	Σ	POWTRAN $C \in$																									
AC Motor Drivers Modle Input Spec. Output Spec.	TYPE	PI7800 $132 \mathrm{G3}$																									
	SOURCE:	$3 ¢ 380 \mathrm{~V}$ 50.60Hz																									
	OUTPUT:	$132 \mathrm{KW} 250 \mathrm{~A} 0.00 \cdot 800.0 \mathrm{~Hz}$																									
Serial No.\& Bar Code		\|		II							III																
	POWTRAN TECHNOLOGY CO, LTD. hitp: / /Wiw. Poutras. com made in sheizzen china																										

Model designation:

POWTRAN INVERTER

Serial Name

PI780: PI7800 Serial
PI760: PI7600 Serial PI800: P18000 Serial PI168: PI168 Serial class code:
: normal configuration
:spetial 1 configuration
2:spetial 2 configuartion
type code
a: normal (elided)
b: inhanced m: mini
d: single board
Applicable motor capacity ($\bullet \bullet$ •)
e.g.: 7R5: 7.5KW

110: 110KW

1-2. Safety Precautions

※ Never connect the A.C. power supply to the output terminals (U, V, W) of
the frequency inverter.
※ Fix and lock the panel before supplying power so as to avoid the danger caused by the poor capacity or other components inside the inverter.
$※ \quad$ After the power supply is switched on, do not perform wiring or check, etc.
※ Don't touch the circuit boards or its parts or components in the inverter when it is powered, so as to avoid danger of electric shock.
※ If the power supply is switched off, do not touch the PCB or other parts inside the inverter within 5 minutes after the keyboard indicator lamp goes off, and you must check by using the instrument that the inverter has completely discharged all its capacity before you start to work inside the inverter. Otherwise, there will be the danger of electric shock.
$※ \quad$ The static electricity in human body will cause serious damage to the MOS field effect transistor in the inverter. Please keep your hands away from the PCB, IGBT and other internal parts before taking actions to prevent static electricity. Otherwise, faults may be caused.
※ In use, the earthing terminal (E or $\stackrel{\perp}{=}$) of the frequency inverter must be grounded to the earthing connections correctly and securely according to the national electrical safety specifications and other applicable standards.
※ Please don't shut off the unit by turning off the power supply. Turn off the power supply after the motor has stopped its operation.
※ Meet CE standard with EMI filter.

1-3. Application

※ Powtran inverter is generally applied to 3 phase AC asynchronism motors.
※ Powtran inverter is applied to the admisive occasion, the occasion where is not admissive may lead to fire, electric shock, explosion and so on.
※ If the inverter seizes up when it is applied to the equipment which may lead danger (e.g. lift tools of transportation, aviation system, saftety equipment, etc), it should be managed carefully. Do inquire the factory when it happens.

Only the well-trained personnel are allowed to use this unit, and such personnel must read through the parts of this manual relating to the safety, installation, operation and maintenance before using the unit. The safe operation of this unit depends on correct transport, installation, operation and maintenance!

Section II. Installation \& Standby Circuit

2-1. Conditions for Use

1) Ambient temperature $-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$.
2) Avoid electromagnetic interference and keep the unit away from the interference source.
3) Prevent dropping water, steam, dust, powder, cotton fiber or fine metal powder from entering it.
4) Prevent oil, salt and corrosive gas from entering it.
5) Avoid vibration.
6) Avoid high temperature and moisture and avoid being wetted due to raining, with the humidity below 90% RH (not dewing).
7) Prohibit the use in the dangerous environment where inflammable or combustible or explosive gas, liquid or solid exists.

2-2. Installation

The frequency inverter must be installed by wall hooking in the indoor room with adequate ventilation, with enough space left between it and the adjacent objects or damper (walls) surrounding it, as shown in the below figure:

2-3. Wiring

The wiring of frequency inverter includes two parts: main circuit and control circuit. The user must ensure correct connections according to the following connection diagram.

2-3-1. PI7800 Diagram

1. Wiring diagram $7.5 \mathrm{KW} \sim 15 \mathrm{KW}$ and below

© shows main circuit O shows control circuit $\frac{f}{\square}$ indicates shielded leads

2. Wiring diagram $18.5 \mathrm{KW} \sim 22 \mathrm{KW}$

© shows main circuit \bigcirc shows control circuit $\frac{f}{\square}$ indicates shielded leads

© shows main circuit O shows control circuit $\frac{f}{q}$ indicates shielded leads

4. Wiring diagram1187~355KW

© shows main circuit O shows control circuit $\frac{\mathrm{f}}{\mathrm{H}}$ indicates shielded leads

2-3-2. PI7600 Wiring diagram

1. Wiring diagram 7.5 KW and below

(©) shows main circuit O shows control circuit \quad indicates shielded leads

2-4. Main Circuit Terminals

2-4-1. PI7800 Main Circuit Terminals

3. 30~160kW (380V) Main Circuit Terminal

Note: $\mathrm{P} / \mathrm{P}^{+}$Standard setting is short circuit; if it is with external reactance, please

4.187KW~355KW and above (380 V) Main Circuit Terminal (132~160KW optional)

2-4-2. PI7600 Main Circuit Terminal

1. 7.5 KW and below (380V) Main Circuit Termial

For 4N2B and 4N3B panel, " E " is on the steel panel.
Note: The above KW categaries are for G type inverter.

2-4-3. Terminal Function

Terminal	Description	Functions
R/L1	Power input for frequency inverter	Connected to 3-phase power (Single input connected to R, T)
S/L2		
T/L3		
E/PE	Grounding point	Grounded to the earth
RB, RB'	Connection point for braking resistance	Connect brake resistance
U/T1	3 Phase Output	Connected to 3-phase motor
V/T2		
W/T3		
$\mathrm{P}+$, N	DC Bus output	Connect the brake unit
P, P+	DC reactance	Connect DC reactance

2-5. Control Circuit Terminals

Class	Terminal	Description	Function
$\begin{aligned} & \text { 즈 } \\ & \text { C } \\ & \text { N } \\ & \text { 응 } \\ & \hline 0 \end{aligned}$	COM	Common point for control commands	
	FWD	Forward rotation command	F05=1, Edge triggers(F62=0), and runs forward in falling edge, stops in rising edge
			F05=3, Level triggers(F62=0/1/2)
	REV	Reverse rotation command	F05=1, Edge triggers (F62=0), and runs reverse in falling edge, stops in rising edge.
			F05=3, Level triggers(F62=0/1/2)
	JOG	Jog command	Level triggers, and executes JOG command in a lower level, stops in a high level
	SS1	Multi-step speed/acceleration	F63=1/2,Short-circuited to COM to compose 7-step speed and acceleration, level triggers, effective in a lower level
		Rising/Falling control	F04=4,for rising control
		Frequency mode switch	Switch the frequency setting mode with SS2

Section II．Installation \＆Standby Circuit

	SS2	Multi－step speed／acceleration	F63＝1／2，Short－circuited to COM to compose 7 －step speed and acceleration，level triggers，effective in a lower level
		Rising／Falling control	F04＝4，for falling control
		Frequency mode switch	Switch the frequency setting mode with SS1
	SS3	Multi－step speed／acceleration	Short－circuited to COM to compose 7－step speed and acceleration，level triggers，effective in a lower level
		JOG control	F63＝3 COM is short－circuited to SS3 to execute JOG reverse command，to JOG to execute JOG forward command，and the previous JOG direction is invalid．
		Three－line running control	F63＝1／2，F62＝2 Three－line terminal running for details
		Program running restart	For selecting the program running restart mode
	FRE	Free Run	Level triggers，and executes free stop command in a lower level
	RST	Restore	Level triggers，executes restore command in falling edge．
$\begin{aligned} & \text { 드 } \\ & \text { O} \\ & \text { N } \\ & \text { 를 } \end{aligned}$	$\begin{aligned} & \text { TA1 } \\ & \text { TB1 } \\ & \text { TC1 } \end{aligned}$	Output signal 5	TA1－TC1 is open and TB1－TC1 is closed（ programmable）
	$\begin{aligned} & \text { TA2 } \\ & \text { TB2 } \\ & \text { TC2 } \end{aligned}$	Output signal 6	TA2－TC2 is open and TB2－TC2 is closed（programmable）
	SPA／COM	Output signal 1	Output open collector signal（24VDC－50mA）
	SPB／COM	Output signal 2	
	SPC／COM	Output signal 3	
	SPD／COM	Output signal 4	
Analog Input and output signal	V1，V3	Power Supply	＋10V，GND
	V2	Voltage Input signal	Range is adjustable in $0 \sim 10 \mathrm{~V}$
	12	Current Input signal	Range is adjustable in $0 \sim 20 \mathrm{~mA}$
	VF	Voltage feedback input signal	0～10V／1～5V
	IF	Current feedback input signal	0～20mA／4～20mA
	ACM	Common terminal of DA1 and DA2	Used for common terminal when DA1／DA2 selects voltage output
	V1	Power Supply of DA1 and DA2	Used for Power Supply when DA1／DA2 selects current output
	DA1	Multi－function analog signal output 1	$\begin{aligned} & \hline 0 \sim 10 / 1 \sim 5 \mathrm{VDC} \\ & 0 \sim 20 / 4 \sim 20 \mathrm{~mA} \end{aligned}$
	DA2	Multi－function analog signal output 2	$\begin{aligned} & \hline 0 \sim 10 / 1 \sim 5 \mathrm{VDC} \\ & 0 \sim 20 / 4 \sim 20 \mathrm{~mA} \end{aligned}$
	DFM	DFM multiple adjustment	Factory setting 1：1，duty＝50\％，10VDC
充㐫	24 V	Power Positive terminal	Maximal output $24 \mathrm{~V} / 200 \mathrm{~mA}$
	COM	Common point	
	$\begin{aligned} & \text { SG+, } \\ & \text { SG-, } \\ & \text { SH } \end{aligned}$	Communication positive／ negative signal，Screen signal	RS485 communication（refer to Appendix 1）

Section II．Installation \＆Standby Circuit

2－5－2 Control circuit terminal

1）7KLCB．V4 Control circuit terminal

DA1 DA2 ACM DFM IF VF V1 V3 COM JOG SS2 FRE SPD SPB＋ 24 V TA1 TC1 TB1

SG＋SG－SH I2 V1 V2 V3 REV FWD SS1 SS3 RST SPC SPA COM TA2 TC2 TB2

2）7KSCB．V1 Control circuit terminal

DA1 DA2 ACM DFM IF VF V1 REV FWD SS1 SS3 RST SPB COM SPA
$\oplus \oplus 日$

鸟鸟河鸟鸟岛鸟鸟鸟

SH SG－SG＋I2 V1 V2 V3 COM JOG SS2 FRE＋24V TA1 TB1 TC1

2－6．Connection Precautions

※ Don＇t install power factor capacitance or resistance－capacitance absorbing device between the output terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$ of the frequency inverter．
※ To disassemble or replace the motor，the input power supply must be turned off for the frequency inverter．
※ The motor or power supply can be switched on／off only after the inverter stops its output．
※ In order to minimize the effect of electromagnetic interference，a surge absorbing device should be installed if used electromagnetic contactor and relay，etc．is near to the frequency inverter．
※ For external control of frequency inverter，a isolation device should be used for the control lines or screened cable should be used．
※ A screened cable should be used as the signal connection line for input command and must be routed separately as well，and it had better be installed far from the main circuit．
※ When the carrier frequency is less than 3 kHz ，the distance between the frequency inverter and motor must not be greater than 50 meters （maximum）．When it is above 4 kHz ，this distance should be reduced．The cable for this connection had better be laid in metal conduit．
※ If the frequency inverter is equipped with peripheral devices（such as filter， reactor），first measure its insulation resistance to the earth with 1000 V megohm meter，and ensure the resistance value is not below $4 \mathrm{M} \Omega$ ．
※ If the frequency inverter must be started frequently，don＇t switch off its power supply，and the operator must start or stop the inverter by using the COM／FWD of the control terminal or Keyboard or RS485，in order to avoid damage to the bridge rectifier．
※ Don't connect A.C. input power to the output terminals U, V, W of the frequency inverter.
※ In order to prevent unexpected accidents, earthing terminal E or $\stackrel{\perp}{=}$ must be grounded to the earth securely (the grounding resistance should be below 100Ω). The cable size should be greater than half of belowmentioned corresponding cable size; otherwise current leakage will happen possibly.
※ For wiring of main circuit, please refer to national rule.
※ Capacity of the motor should be equal to or smaller than that of the inverter.

2-7. Standby circuit

When the fault or trip of the inverter may cause great loss or accident, please add the standby circuit.
Note: confirm and test the running characteristic of the standby circuit, in order to ensure the industrial phase and the converter phase are in the same direction.

Section III. Operating keyboard

3-1. Operating keyboard

 ~JP3E7000 keyboardSpecification and function description

The detailed function description is in the following text (JP5E7000).
*JP3E7000 Keyboard is optional for PI7800, PI76000 Family inverter.
~ JP5E7000 Keyboard
Specification and function description

Function description

Run key:
\leq drive forward.
Stop/Reset key:
$\leq \quad$ Drive stops, resets after abnormity and confirms fault.
Acc. Selection /Parameter setting:
\leq When select parameter, press the SET key and add/reduction key, parameter code add/reduce 10
\leq Restore modified value
$\leq \quad$ alternate the monitor object and monitor
Escape/display
$\leq \quad$ Escape modifying the data of function parameters
$\leq \quad$ Escape of submenu or running into menu of status display from function menu
$\leq \quad$ Escape of fault status.
Jog key
$\leq \quad$ On: jog
$\leq \quad$ Off: stop
LED main display area
$\leq \quad$ Anterior 3 digits display the function code
$\leq \quad$ Latter 4 digits display the value as per the function code
Data unit prompt Light:
$\leq \quad$ It is formed up by 3 instruction light on the right upside of the keyboard, different status indicates different unit of the current parameter displayed in the LED. The units for the parameters as blow:

*JP5E7000 is the standard keyboard for PI7800, PI7600 Family inverter.
u For the 4 keypads, when the keypad is unlocked, press the and simultaneously for 3 seconds, the keypad is locked, LED displays normally after displaying "LoC" for 2 seconds; when the keypad is locked, press the组 displays normally after displaying "ULoC" for 2 seconds.
it JP6E7000, JP6C7000 keyboard
Specification and function description

function description

Forward key:
$\leq \quad$ Drive forward.
Reverse key:
$\leq \quad$ Drive reverse.
Stop/Reset key:
$\leq \quad$ Drive stops, resets after abnormity and confirms fault.
Acc. Selection /Parameter setting:
\leq When select parameter, press the SET key and add/reduction key, parameter code add/reduce 10
$\leq \quad$ Restore modified value
$\leq \quad$ alternate the monitor object and monitor

Escape/display

$\leq \quad$ Escape modifying the data of function parameters
\leq Escape of submenu or running into menu of status display from function menu
\leq Escape of fault status.
Jog key
$\leq \quad \mathrm{On}: j o g$
\leq Off: stop
The upper LED main display area
\leq Display frequency, current, voltage, etc. Also display fuult code, password
right
FWD/REV Indication light
\leq Display motor's running state: forward or reverse
The nether LED main display area
\leq Display function code
$\leq \quad$ Display set frequency during running
JP6E7000 is standard keyboard for PI7800, PI7600 Family inverter.
JP6C7000 keyboard has the same structure and instruction with those of JP6E7000. The difference is that the lower LED display is changed into LCD display which displays the state and parameters in English. JP6C7000 is the optional keyboard for PI7800, PI7600

The third monitor select F66=2 motor actual current

LCD main display area
4. Press PRG once modifying 015
5. Press \boldsymbol{A} once, upper LED flashes " 1
6. Press SET confirming value modification.

3-2. Parameters set mode

e.g. 1 Modify acceleration time F09=5.0 to F09=25.0:v

1. With F00 mode, press \boldsymbol{A} selecting F09, upper LED displays 5.0.
2. Press PRG for 3 times, upper LED ten digits " 0 " flashes.
3. Press $\mathbf{\Delta}$ for twice, upper LED ten digits displays "2".
4. Press SET confirming value modification

press SET key to affirm

e.g. 2 Modify 015=0 to 015=1
5. With F00, press ∇ selecting F69.
6. Press PRG entering I/O group parameters menu.
7. Press ∇ selecting 015.

Section IV. Test running

u Before connecting the power supply with the frequency converter, confirm that the input voltage of AC power is within the rated input voltage of the frequency converter.
u Connect the power supply with the R, S and T terminals of frequency converter (connect with R and S terminals for single-phase input).
u Select the proper operation control method.
e.g.: analog voltage input + keyboard /terminal operating (Pr.F04=1, Pr.F05=1).

The frequency command is controlled by terminal V 2 , and the operation is controlled by the keyboard and terminal FWD, REV.

e.g.: keyboard adjust speed + keyboard operating (Pr.F04=0, Pr.F05=0)

The frequency command is controlled by the key, and operation is controlled by the key FWD, REV controlling the forward and reverse.

※ Running the unit without load, regulate the speed and check.
※ Confirm the min. and max values of the set output frequency.
※ Check JOG control.
※ Confirm the acceleration and deceleration time.
※ Connect with the motor.
※ Run the motor at low speed and check its rotation direction.
Check if all the displays and outputs during the operation are correct.

Section V. Function parameter table

5-1. Basic Parameters

Ref	LCD keyboard explanation	Range of set value		Unit	$\begin{array}{\|c} \hline \text { Factor } \\ y \\ \text { setting } \end{array}$	Y/N
F00	monitor select	Set frequency	0	-	0	Y
		Actual frequency	1			
		Motor actual current	2			
		Actual current percent	3			
		DC Bus voltage	4			
		Actual output voltage	5			
		Actual motor speed	6			
		Total running time	7			
		IGBT temperature	8			
		PID set value	9			
		PID feedback value	10			
		Motor output power	11			
		Excitation heft set value	12			
		Excitation heft actual value	13			
		Torque heft set value	14			
		Torque heft actual value	15			
F01	control methods	No PG V/F control	0	-	0	N
		PG V/F control	1			
		PG vector control	2			
F02	set frequency	Lower frequency U Upper frequency	F03=0	Hz	50.00	Y
			F03=1		500.0	
F03	fre. multiple set	$\times 1$	0	-	0	N
		$\times 10$	1			
F04	fre. set mode	Keypad	0	-	0	N
		V2	1			
		12	2			
		V2+12	3			
		Ascend/Descend control 1	4			
		Program running	5			
		Traverse running	6			
		PID control	7			
		Keypad potentionmeter set	8			

		V2 Forward/Reverse set	9			
		Keypad potentionmeter FWD/REV set	10			
		V2 proportional linkage adjustment	11			
		12 proportional linkage	12			
		Ascend/Descend control 2	13			
F05	run control mode	Keypad+RS485/CAN	0	-	0	Y
		$\begin{gathered} \text { Keypad + } \\ \text { terminal+RS485/CAN } \end{gathered}$	1			
		RS485/CAN	2			
		terminal	3			
F06	waveform mode	Asynchronous space vector PWM	0	-	1	N
		Stepless \& subsection synchronous space vector PWM	1			
		2 phase optimized space vector PWM	2			
F07	auto.torque boost	0~10		\%	0	Y
F08	V/F boost mode	0~61		-	2	N
F09	accelerate time	0.1~3200.0		s	10.0	Y
F10	decelerate time	0.1~3200.0		s	10.0	Y
F11	slip compensate	0~10		\%	0	N
F12	O.P. voltage ratio	50~110		\%	100	N
F13	max. frequency	10.00~300.00	F03=0	Hz	50.00	N
		100.0~800.0	F03=1		500.0	
F14	basic frequency	5.00~ F13	F03=0	Hz	50.00	N
		50.0~ F13	F03=1		500.0	
F15	carrier frequency	1.0~16.0		kHz	\star	Y
F16	Lower frequency	0.00~ F17	F03=0	Hz	0.00	N
		0.0~ F17	F03=1		0.0	
F17	upper frequency	F16~F13	F03=0	Hz	50.00	N
			F03=1		500.0	
F18	S curve acc. start	0.0~50.0		\%	0.0	Y
F19	S curve acc. stop	0.0~50.0		\%	0.0	Y
F20	S curve dec. start	0.0~50.0		\%	0.0	Y
F21	S curve dec. stop	0.0~50.0		\%	0.0	Y
F22	min. running fre.	0.00~ F13	F03=0	Hz	0.00	N
		0.0~ F13	F03=1		0.0	
F23	DC brake current	0~135		\%	100	Y

Section V. Function Parameter Table

F24	start brake time	0.0~60.0				S	0.0	N
F25	stop brake time	0.0~60.0				S	0.0	N
F26	brake start fre.	0.00~F13			F03=0	Hz	0.00	Y
		0.0~F13			F03=1		0.0	
F27	stopping mode	Deceleration stop			0		0	N
		Free stop			1			
F28	jog acc. time	0.1~3200.0				S	1.0	N
F29	jog dec. time	0.1~3200.0				S	1.0	N
F30	Jog function set	$\begin{gathered} \text { JOG stop } \\ \text { mode } \end{gathered}$	Ten's place	direction	digit	.	0	N
		$\begin{gathered} \text { Stop } \\ \text { running } \end{gathered}$	0	Forward	0			
		Reset to the state before JOG	1	Reverse	1			
F31	jog frequency set	F16~F17			F03=0	Hz	6.00	Y
					F03=1		60.0	
F32	traverse fre. 1	F33~F17			F03=0	Hz	40.00	Y
					F03=1		400.0	
F33	traverse fre. 2	F16~F32			F03=0	Hz	20.00	Y
					F03=1		200.0	
F34	traverse differ.	0.00~5.00			F03=0	Hz	2.00	Y
		0.0~50.0			F03=1		20.0	
F35	traverse time 1	0.0~3200.0				S	2.0	Y
F36	traverse time 2	0.0~3200.0				S	2.0	Y
F37	skip frequency 1		00~F13		F03=0	Hz	0.00	Y
			.0~F13		F03=1		0.0	
F38	skip frequency 2		00~F13		F03=0	Hz	0.00	Y
			.0~F13		F03=1		0.0	
F39	skip frequency 3		00~F13		F03=0	Hz	0.00	Y
			.0~F13		F03=1		0.0	
F40	skip frequency range		.00~5.00		F03=0	Hz	0.00	Y
			.0~50.0		F03=1		0.0	
F41	auto. Voltage regulation		nvalid		0	-	0	Y
			Valid		1			
		Valid bu de	useless celerating	when	2			
F42	OU stall protect		nvalid		0	-	1	Y
		Valid			1			
F43	current limit	Invalid			0	-	0	Y

Section V. Function Parameter Table

				Valid				1			
F44	rate track select			Invalid				0	-	0	N
				Pick up mode when power down				1			
				Pick up mode when start				2			
F45	elec. o.h. protect			Invalid				0	-	1	Y
				Valid				1			
F46	protect level			120~250					\%	\star	N
F47	consumed brake			Invalid				0	-	0	Y
				Safe mode				1			
				General mode				2			
F48	Fault reset times			0~10					-	0	N
F49	Fault reset time			0.5~20.0					S	1.0	N
F50	Program running mode			Single circulation				0	-	0	N
				Continuous circulation				1			
				Single circulation command running				2			
F51	Restart mode			Runs at step 1				0	-	0	N
				Runs at the step before stopping				1			
F52	RST input signal			Reset				0		0	Y
				External fault/Reset				1			
F53	Fan start temp. (options)			0.0~60.0					${ }^{\circ} \mathrm{C}$	0.0	Y
F54	Motor run direction			FWD command,motor forwards				0		0	N
				FWD command,motor reverses				1			
F55	Motor reverse forbidden				Revers	se allowa		0	-	0	N
				Reverse forbidden				1			
F56	Time unit setting	dec. time	undred splace		Acc. time	tens place	reserved	digit	-	0	N
		$\times 1 \mathrm{~s}$		0	$\times 1$ s	0					
		$\times 30$ s		1	$\times 30 \mathrm{~s}$	1					
		$\times 600$ s		2	$\times 600$ s	2					
		$\times 3600$ s	3		$\times 3600$ s	3					
F57	\% in energy saving energy			30~100					\%	100	N
F58	FDT fre. set 1			F59~ F13				F03=0	Hz	0.00	Y
				F59~ F13				F03=1		0.0	
F59	FDT fre. set 2			0.00~ F58				F03=0	Hz	0.00	Y
				0.0~ F58				F03=1		0.0	

Section V. Function Parameter Table

F60	Fre. Inspection range	0.00~5.00	F03=0	Hz	0.00	Y
		0.0~50.0	F03=1		0.0	
F61	Load type	General	0		0	N
		Water Pump	1			
		Blower fan	2			
		Plastic jetting mould machine	3			
		Braiding machine	4			
		Hoister	5			
		Pumping jack	6			
		Belt conveyor	7			
		Electromagnetic stirring power supply	8			
F62	Terminal control modes	Standard running control	0	-	0	N
		2-point running control	1			
		3 -point running control	2			
F63	MSS terminal function selection	Invalid	0	-	0	N
		MSS multi-step speed control	1			
		MSS multi-step acceleration control	2			
		JOG forward/ reverse control	3			
		Frequency setting mode switch	4			
		Upper torque shifted	5			
		MSS time running	6			
		Control mode shifted	7			
		Reset program running segment	8			
F64	Polarity of input terminal	0~255		-	0	N
$\begin{aligned} & \text { F65 } \\ & \text { F66 } \end{aligned}$	Monitor Subject Reserved	Set frequency	0	-	1	NN
		Actual frequency	1			
		Motor actual current	2			
		Actual current percent	3			
		DC Bus voltage	4			
		Actual output voltage	5			
		Actual motor speed	6			
		Total running time	7			
		IGBT temperature	8			
		PID set value	9			
		PID feedback value	10			
		Motor output power	11			

Section V. Function Parameter Table

5-2. Other Parameters

5-2-1. F67 V/F curve [V/F]

Ref	LCD keyboard explanation	Range of set value		Unit	Factory setting	Y/N
U00	V/F set fre 1	0.00~U02	F03=0	Hz	5.00	N
		0.0~U02	F03=1		50.0	
U01	V/F set voltage 1	0~U03		\%	5	N
U02	V/F set fre. 2	U00~U04	F03=0	Hz	10.00	N
			F03=1		100.0	
U03	V/F set voltage 2	U01~U05		\%	10	N
U04	V/F set fre. 3	U02~U06	F03=0	Hz	15.00	N
			F03=1		150.0	
U05	V/F set voltage 3	U03~U07		\%	15	N
U06	V/F set fre. 4	U04~U08	F03=0	Hz	20.00	N
			F03=1		200.0	
U07	V/F set voltage 4	U05~U09		\%	20	N
U08	V/F set fre. 5	U06~U10	F03=0	Hz	25.00	N
			F03=1		250.0	
U09	V/F set voltage 5	U07~ U11		\%	25	N
U10	V/F set fre. 6	U08~U12	F03=0	Hz	30.00	N
			F03=1		300.0	
U11	V/F set voltage 6	U09~U13		\%	30	N
U12	V/F set fre. 7	U10~U14	F03=0	Hz	35.00	N
			F03=1		350.0	
U13	V/F set voltage 7	U11~		\%	35	N

Section V. Function Parameter Table

U14	V/F set fre. 8	U12~F13	F03=0	Hz	40.00	N
			F03=1		400.0	
U15	V/F set voltage 8	U13		\%	40	N

5-2-2. F68 MSS group [MSS]

Ref	LCD keyboard explanation	Range of set value		Unit	Factory setting	Y/N
H0O	1 step speed 1 X	F16~F17	F03=0	Hz	5.00	Y
			F03=1		50.0	
H01	2 step speed 2 X	F16~F17	F03=0	Hz	30.00	Y
			F03=1		300.0	
H02	3 step speed 3X	F16~F17	F03=0	Hz	20.00	Y
			F03=1		200.0	
H03	4 step speed 4X	F16~F17	F03=0	Hz	30.00	Y
			F03=1		300.0	
H04	5 step speed 5X	F16~F17	F03=0	Hz	40.00	Y
			F03=1		400.0	
H05	6 step speed 6X	F16~F17	F03=0	Hz	45.00	Y
			F03=1		450.0	
H06	7 step speed 7 X	F16~F17	F03=0	Hz	50.00	Y
			F03=1		500.0	
H07	1 step time T1	0.0~3200.0		S	2.0	Y
H08	2 step time T2	$0.0 \sim 3200.0$		S	2.0	Y
H09	3 step time T3	$0.0 \sim 3200.0$		S	2.0	Y
H10	4 step time T4	$0.0 \sim 3200.0$		S	2.0	Y
H11	5 step time T5	0.0~3200.0		S	2.0	Y
H12	6 step time T6	0.0~3200.0		S	2.0	Y
H13	7 step time T7	0.0~3200.0		S	2.0	Y
H14	acc. time at1	0.1~3200.0		S	10.0	Y
H15	dec. time dt1	0.1~3200.0		S	10.0	Y
H16	acc. time at2	0.1~3200.0		S	10.0	Y
H17	dec. time dt2	0.1~3200.0		S	10.0	Y
H18	acc. time at3	0.1~3200.0		S	10.0	Y
H19	dec. time dt3	0.1~3200.0		S	10.0	Y
H20	acc. time at4	0.1~3200.0		S	10.0	Y
H21	dec. time dt4	0.1~3200.0		S	10.0	Y
H22	acc. time at5	0.1~3200.0		S	10.0	Y
H23	dec. time dt5	0.1~3200.0		S	10.0	Y

Section V. Function Parameter Table

H24	acc. time at6					0.1~32	200.0			S	10.0	Y
H25	dec. time dt6			0.1~3200.0						S	10.0	Y
H26	acc. time at7			0.1~3200.0						S	10.0	Y
H27	dec. time dt7			0.1~3200.0						S	10.0	Y
H28	Multi-step speed 1 running direction	dec. time	kilobit	Acc. time	hundred' s place	Running time	$\begin{gathered} \text { tens } \\ \text { place } \end{gathered}$	Running direction	digit	-	0	Y
		$\times 1$ s	0	$\times 1$ s	0	$\times 1$ s	0	forward	0			
		$\times 30 \mathrm{~s}$	1	$\times 30$ s	1	$\times 10$ s	1					
		$\times 600 \mathrm{~s}$	2	$\times 600$ s	2	$\times 100$ s	2	reverse	1			
		$\times 3600$ s	3	$\times 3600 \mathrm{~s}$	3	$\times 1000 \mathrm{~s}$	3					
H29	Multi-step speed 1 running direction	dec. time	kilobit	Acc. time	$\begin{array}{\|c\|} \hline \text { hundred' } \\ \text { s place } \end{array}$	Running time	$\begin{gathered} \text { tens } \\ \text { place } \\ \hline \end{gathered}$	Running direction	digit	-	0	Y
		$\times 1$ s	0	$\times 1$ s	0	$\times 1 \mathrm{~s}$	0	forward	0			
		$\times 30 \mathrm{~s}$	1	$\times 30 \mathrm{~s}$	1	$\times 10$ s	1					
		$\times 600 \mathrm{~s}$	2	$\times 600$ s	2	$\times 100$ s	2	reverse	1			
		$\times 3600$ s	3	$\times 3600 \mathrm{~s}$	3	$\times 1000$ s	3					
H30	Multi-step speed 1 running direction	dec. time	kilobit	Acc. time	$\begin{array}{\|c\|} \hline \text { hundred' } \\ \text { s place } \\ \hline \end{array}$	Running time	$\begin{array}{\|c\|} \hline \text { tens } \\ \text { place } \end{array}$	Running direction	digit	-	0	Y
		$\times 1 \mathrm{~s}$	0	$\times 1 \mathrm{~s}$	0	$\times 1 \mathrm{~s}$	0	forward	0			
		$\times 30 \mathrm{~s}$	1	$\times 30 \mathrm{~s}$	1	$\times 10 \mathrm{~s}$	1					
		$\times 600 \mathrm{~s}$	2	$\times 600$ s	2	$\times 100$ s	2	reverse	1			
		$\times 3600$ s	3	$\times 3600 \mathrm{~s}$	3	$\times 1000$ s	3					
H31	Multi-step speed 1 running direction	dec. time	kilobit	Acc. time	hundred' s place	Running time	$\begin{aligned} & \text { tens } \\ & \text { place } \end{aligned}$	Running direction	digit	-	0	Y
		$\times 1$ s	0	$\times 1$ s	0	$\times 1$ s	0	forward	0			
		$\times 30 \mathrm{~s}$	1	$\times 30 \mathrm{~s}$	1	$\times 10$ s	1					
		$\times 600 \mathrm{~s}$	2	$\times 600$ s	2	$\times 100$ s	2	reverse	1			
		$\times 3600$ s	3	$\times 3600$ s	3	$\times 1000$ s	3					
H32	Multi-step speed 1 running direction	dec. time	kilobit	Acc. time	hundred' s place	Running time	$\begin{aligned} & \text { tens } \\ & \text { place } \end{aligned}$	Running direction	digit	-	0	Y
		$\times 1 \mathrm{~s}$	0	$\times 1 \mathrm{~s}$	0	$\times 1 \mathrm{~s}$	0	forward	0			
		$\times 30 \mathrm{~s}$	1	$\times 30$ s	1	$\times 10$ s	1					
		$\times 600 \mathrm{~s}$	2	$\times 600$ s	2	$\times 100$ s	2	reverse	1			
		$\times 3600$ s	3	$\times 3600$ s	3	$\times 1000$ s	3					
H33	Multi-step speed 1 running direction	dec. time	kilobit	Acc. time	hundred' s place	Running time	$\begin{array}{\|l\|} \hline \text { tens } \\ \text { place } \\ \hline \end{array}$	Running direction	digit	-	0	Y
		$\times 1 \mathrm{~s}$	0	$\times 1 \mathrm{~s}$	0	$\times 1 \mathrm{~s}$	0	forward	0			
		$\times 30 \mathrm{~s}$	1	$\times 30 \mathrm{~s}$	1	$\times 10$ s	1					
		$\times 600 \mathrm{~s}$	2	$\times 600 \mathrm{~s}$	2	$\times 100$ s	2	reverse	1			
		$\times 3600$ s	3	$\times 3600$ s	3	$\times 1000 \mathrm{~s}$	3					
H34	Multi-step speed 1	dec. time	kilobit	Acc. time	hundred' s place	Running time	tens place	Running direction	digit	-	0	Y
		$\times 1 \mathrm{~s}$	0	$\times 1 \mathrm{~s}$	0	$\times 1 \mathrm{~s}$	0	forward	0			

5-2-3. F69 I/O group [I/O]

Ref	LCD keyboard explanation	Range of set value			Unit	Factory setting	Y/N
000	V2 input filter time	2~200			ms	10	Y
001	V2 min. input voltage	0.00~002			V	0.00	Y
002	V2 max. input voltage	001~10.00			V	10.00	Y
003	I input filter time	2~200			ms	10	Y
004	I input min. current	0.00~005			mA	0.00	Y
005	I input max. current	004~20.00			mA	20.00	Y
$\begin{aligned} & 006 \\ & 007 \end{aligned}$	DA1 Ouput DA2 Output	No Function	0		-	0	YY
		Set frequency	1				
		Actual frequency	2				
		Actual current	3				
		Output voltage	4				
		Bus voltage	5				
		IGBT temperature	6				
		Output power	7				
		Output speed	8				
		Actual torque	9				
008	DA1 output lower adjustment	0~009			\%	0.0	Y
009	DA1 output upper adjustment	008~100.0			\%	100.0	Y
010	DA2 output lower adjustment	0~011			\%	0.0	Y
011	DA2 output upper adjustment	010~100.0			\%	100.0	Y
012	DFM multiple	1~20			-	1	Y
$\begin{aligned} & \hline 013 \\ & 014 \\ & 015 \\ & 016 \\ & 017 \\ & 018 \end{aligned}$	O.P. signal sel. 1 O.P. signal sel. 2 O.P. signal sel. 3 O.P. signal sel. 4 O.P. signal sel. 5 O.P. signal sel. 6	No function		0		0	Y
		Fault alarm		1		0	Y
		Over current inspection		2		0	Y
		Over load inspection		3	-	1	Y
		Over voltage inspection		4	-	8	Y
		Lack voltage inspection		5			
		Low load inspection		6			
		Over heat inspection		7			
		Running state with command		8			

Section V. Function Parameter Table

5-2-4. F70 CUR group [CUR]

Ref	LCD keyboard explanation	Range of set value	Unit	Factory setting	Y / N
C00	detect filter time	$2 \sim 200$	ms	10	Y
C01	re. filter time	$2 \sim 200$	ms	10	Y
C02	integral time of current loop	$0 \sim 9999$	ms	500	Y
C03	proportion gain	$0 \sim 1000$	$\%$	100	Y

Section V. Function Parameter Table

C04	torque setting	$0.0 \sim 100.0$	$\%$	80.0	Y
C05	excitation setting	$0.0 \sim 100.0$	$\%$	60.0	Y

5-2-5. F71 SPD group [SPD]

Ref	LCD keyboard explanation	Range of set value	Unit	Factory setting	Y / N
d00	filter time	2~200	ms	10	Y
d01	integral time	$0.01 \sim 100.00$	s	0.25	Y
d02	differential time	$0.000 \sim 1.000$	s	0.000	Y
d03	proportion gain	$0 \sim 1000$	$\%$	100	Y

5-2-6.F72 PID group [PID]

Ref	LCD keyboard explanation	Range of set value				Unit	Factory setting	Y/N
P00	PID regulate mode	Abnormity management	Tens digit	$\begin{array}{r} \text { Adjustn } \\ \text { mod } \end{array}$	Unit	-	10	N
		Warning Continuous running	1	Negat actio	0			
		Warning Decelerating running	2	Positi actio	1			
		Warning Free stop	3					
P01	O.P. fre. limit	0~110				\%	100	N
P02	Feedback signal select	External termi	nal IF:0	-20mA	0	-	2	N
		External terminal IF:4~20mA			1			
		External terminal VF:0~10V			2			
		External terminal VF:1~5V			3			
P03	set signal select	External termi	nal 12:0	-20mA	0	-	3	N
		External termi	nal 12:4	$\sim 20 \mathrm{~mA}$	1			
		External terminal V2:0~10V			2			
		Keyboard input			3			
		RS485 input			4			
		Setting by keypad potentionmeter			5			
P04	key set signal	0.0~100.0				\%	50.0	Y
P05	integral time	0.01~100.00				S	0.25	Y
P06	differential time	0.000~1.000				S	0.000	Y
P07	proportion gain	0~1000				\%	100	Y
P08	fault detect time	0.0~3200.0				5	300.0	Y

5-2-7. SYS group [SYS]

Section V. Function Parameter Table

5-2-8. MOT group [MOT]

Ref	LCD keyboard explanation	Range of set value		Unit	Factory setting	Y/N
b00	motor poles	1~8		-	2	N
b01	motor rated cur.	$\mathrm{y} 07 \times(30 \% \sim 120 \%)$		A	\star	N
b02	motor rated vol.	100~1140		V	\star	N
b03	motor rated speed	500~5000		rpm	1500	N
b04	motor rated frequency	0.00~F13	F03=0	\%	50.00	N
		0.0~F13 F03			500.0	
b05	Motor un-load cur.	0~b01		A	\star	N
b06	stator resistor	0.000~30.000		ohm	0.000	N
b07	rotor resistor	0.000~30.000		ohm	0.000	N
b08	leakage inductance	0.0~3200.0		mH	0.0	N
b09	mutual inductance	0.0~3200.0		mH	0.0	N
b10	PG pulse	300~9999		-	2048	N
b11	PG cut action	Continue running	0	-	0	N
		Alarm \& decelerate to stop	1			
		Alarm and stop freely	2			
b12	PG rotate direct.	Phase A is foregoing when motor forwards	0	-	0	N
		Phase B is foregoing when motor forwards	1			
b13	Motor parameter measure	No measurement	0	-	0	N
		Measured before running	1			
b14	Rotate speed display plus	0.1~2000.0		\%	100.0	Y
b15	Percentage linkage modulus	0.10~10.00		-	1.00	Y
b16	reserved	0		-	0	N
b17	reserved	0		-	0	N

NOTE:

1) Y / N means the parameter is adjustable or not during running, Y means it is adjustable, N means it is not.
2) \star means the parameter's factory setting is affected by the power and type.

Section VI. Function Parameter Description

6-1. Basic parameter:

F00: Monitor selection
 factory setting: 0

The value range is $0 \sim 15$ monitoring $0 \sim 15$ different objects under running

Monitor objects under running

0 : Set frequency
Set frequency under frequency setting mode.
1: Actual frequency
Current output frequency
2: Motor actual current
Detected value of motor's current.
3: Actual current percentage
Percentage of motor's actual current and rated current.
4: DC bus voltage
Detected voltage of DC bus.
5: Output voltage
Actual output voltage of inverter.
6: Actual motor speed rpm
During running, the display of the adjusted motor's actual rotate speed=60 \times Actual output frequency \times Rotate speed display plus/Motor poles
e.g. Actual output frequency 50.00 Hz , Rotate speed display plus b14=100.0\%, Motor poles $b 00=2$, the display of the adjusted motor's actual rotate speed=1500rpm.
During stopping state, checking the motor speed according to residual stress, renewed speed 500 ms .
The display of the adjusted motor's actual rotate speed=60 \times residual stress frequency \times rotate speed display plus/Motor poles
7: Total running time
This parameter indicates the total running time, and the unit is hour or day. e.g. If led display value is $10.31, y 14$ is 0 , the actual running time of the machine is 10 hours, 18 minutes and 36 seconds; if led display value is 20.03 and y 14 is 1 , the actual running time of the machine is 20 days, 43 minutes and 12 seconds.
8: IGBT temperature
Detected IGBT temperature inside inverter.
9: PID set value
Set value percentage when running under PID adjustment.
10: PID feedback value
11: Motor output power
Motor actual output power percentage.
12: Excitation heft set value
Motor's set excitation heft percentage.
13: Excitation heft actual value
Motor's actual excitation heft percentage
14: Torque heft set value
Motor set torque percentage.

15: Torque heft actual value
Motor actual torque hefts percentage.

F01: Control mode

factory setting: 0

This parameter value range is $0 \sim 2$.
0: Without PG V/F control. V/F space voltage vector control.
1: With PG V/F control. V/F space voltage vector control + speed sensor.
2: With PG vector control .vector control + speed sensor

F02: Set frequency
 factory setting: $50.00 / 500.0 \mathrm{~Hz}$

Setting running frequency can be from lower frequency to upper frequency.

F03: Frequency multiple setting

factory setting: 0
0 : Set frequency display accuracy is 0.01 Hz . With this accuracy, F13 maximum frequency range is $10.00 \sim 300.00 \mathrm{~Hz}$.
1: Set frequency display accuracy is 0.1 Hz . With this accuracy, F13 maximum frequency range is $100.0 \sim 800.0 \mathrm{~Hz}$.

F04: Frequency setting mode factory setting: 0

Frequency setting modes can be set by the value $0 \sim 10$, as following:
0: Keypad or RS485 set
1: Set frequency by analog input V2
2: Set frequency by analog input 12
3: By analog input V2 and I2 simultaneity
4: Ascend/Descend control:

This function is to control ascend/descend and target frequency with the terminals SS1, SS2, SS3
It is OFF when SS1, SS2, SS3 are disconnected with COM, ON when they are short circuited.

SS1	Ascend control is to change the frequency increased	
SS2	Descend control is to change the frequency reduced, has precedence over SS1	
SS3	ON	During stopping state, change the frequency caused by SS1/SS2 and turn it to F31 jog frequency
	OFF	During stopping state, keep the frequency caused by

The Ascend/Descend control time in Ascend/Descend control 1 is set by modifying F09/ F10.
The Ascend/Descend time in Ascend/Descend control 2 mode is setted by modifing F28/F29.
5: Program Running
No limitation of the reverse forbidden. Setting value of $\mathrm{H} 28 \sim \mathrm{H} 34$ and terminal FWD/REV decide the running direction
6: Traverse running
Running by setting traverse.
7: PID adjustment running
Applicable for pressure, current close loop control.
8: Keypad potentiometer set
Frequency set by the potentiometer on the keypad.
9. V2 Forward/Reverse set

Anolog input signal V 2 is to the signal to forward/reverse frequency, when V 2 is larger than 001 (V2 minimum input voltage), it is the signal to forward frequency;when V 2 is smaller than 001 , it is the signal to reverse frequency.

10. Keypad potentionmeter FWD/REV set

11: V2 proportion linkage tiny adjust
12: I2 proportion linkage tiny adjust
13: Ascend/Descend control 2

F05: Running control mode

0: Keypad+RS485/CAN contro
1: Keypad + terminal control+RS485/CAN control
To terminal control, edge triggers. Execute FOR/REV command in falling edge and execute STOP command in rising edge.
Note: $\mathrm{F} 62=0$ is valid.
2: RS485/CAN
3: Terminal, level triggers. $\mathrm{F} 62=0 / 1 / 2$ is valid.
4. Proportional linkage function (improved)

For this function, the host computer should be set with the following parameters:

y12	Communication add.	128

For this function, the slave computer should be set with the following parameters:

parameters:			
F04	Fre. Set mode	V2 proportional linkage adjustment	11
		I2 proportional linkage adjustment	12
F05	Run control mode	proportional linkage control	4
F13	Max. frequency	Max. output frequency of inverter	
F22	Min. running fre.	Min. output frequency of inverter	
y12	Communi. address	$0 \sim 127$	
y11	Baud rate	The same with that of host inverter	
b15	Proportional linkage factor	$0.10 \sim 10.00$	
o01	V2 min. input voltage	Adjustment range min. voltage	
o02	V2 max. input voltage	Adjustment range max voltage	
o19	Min. input frequency	0.00	
020	Max. input frequency	Adjustment range	

v Set 128, the inverter is the host inverter among the proportional linkage. There is only one host inverter in one proportional linkage.
$v \quad$ The F04 and F05 parameters of the host inverter can be any settings. The running states of the slave inverters follow the host inverter.
v If the host inverter F04=11/12, setting proportional linkage adjustment, then F63=1 automatically, the frequency of the host inverter controlled by MSS multi-step speed SS1/SS2/SS3

SS3	SS2	SS1	The host inverter frequency
0	0	0	Potentiometer adjustment
0	0	1	1 step speed + Potentiometer adjustment
0	1	0	2 step speed + Potentiometer adjustment
0	1	1	3 step speed + Potentiometer adjustment
1	0	0	4 step speed + Potentiometer adjustment
1	0	1	5 step speed + Potentiometer adjustment
1	1	0	6 step speed + Potentiometer adjustment
1	1	1	7 step speed + Potentiometer adjustment

v The host inverter controls the slave inverter's running state.
v The inverter set frequency=proportional linkage factor \times host inverter frequency + value adjusted by the potentiometer.
$v \quad$ The range of inverter's set frequency: F22 min. running frequency~F13 max. frequency.

E.g. Host inverter set:

F04	Fre. Set mode	V2 proportional linkage adjustment	11
y12	Communi. address	128	
y11	Baud rate	3	
001	V2 min. input voltage	2 V	
002	V2 max. input voltage	10 V	
019	Min. input frequency	0.00 Hz	
020	Max. input frequency	20.00 Hz	

Slave inverter set:

F04	Fre. Set mode	11:V2 proportional linkage adjustment
F05	Run control mode	4
F13	Max. frequency	50.00 Hz
F22	Min. running fre.	0.00 Hz
y12	Communi. address	8
y11	Baud rate	The same with that of the host inverter
b15	Proportional linkage factor	1.00
o01	V2 min. input voltage	2 V
o02	V2 max. input voltage	10 V
o19	Min. input frequency	0.00 Hz
o20	Max. input frequency	
Potentiometer adjustment range 20.00 Hz	20.00 Hz	

Potentiometer adjustment range 20.00 Hz

2 V	-10 Hz
6 V	0 Hz
10 V	+10 Hz

The proportional linkage wiring:

F06: Waveform occurrence mode

factory setting: 1

PWM waveform occurrence mode

0: PWM Asynchronous space vector.
1: Step less \& subsection synchronous space vector PWM, harmonic wave minimized, symmetric output waveform
2: 2 phase optimized space vector PWM, switch loss minimized, asymmetry output waveform.
F07: Auto torque boost factory setting: 0\%
The parameter is used to improve the inverter characteristic in lower frequency,
and boost output voltage when the inverter is running in low frequency.
The calculating form is:
boost voltage $=$ motor rated voltage \times (inverter actual output current $/ 2$ times of motor
rated current) $\times \mathrm{F} 07$

torque boost in drop torque curve

torque boost in constant torque curve

F08: V/F boost mode

factory setting: 2

Totally $62 \mathrm{~V} / \mathrm{F}$ boost modes, there into 0~20 for constant torque load, 21~40 for 1.5 power descending torque load, $41 \sim 50$ for square descending torque load, $51 \sim 60$ for cube descending torque load, 61 is user-defined.

41~50

51~60

F09: Acceleration time
factory setting: 5.0s
Acceleration time is the time from OHz to maximum frequency, as below

F10: Deceleration time

factory setting: 5.0s
Deceleration time is the time from maximum frequency to 0 Hz , as below:

Actual acc/dec time equals to the set acc/dec time multiples a time multiple which is decided by the tens digit of F56. Please refer to F56.

F11: Slip compensate
 factory setting: 0\%

When drives drive the asynchronous motor, the load is added, slip enhanced, this parameter can set compensate frequency, reduce slip, so that the motor runs much closer to the synchronous speed under rated current. If the value set to 0 , no slip compensation functions.
This function is based on correctly setting b01 motor's rated current, b05 motor's current without load.
The calculating form is:
Compensate frequency=Slip compensate \times Rated frequency

$$
\times\left(I_{\text {мХ }}-I_{\text {мо }}\right) /\left(I_{\text {мN }}-I_{\text {мо }}\right)
$$

$l_{\text {MX: }}$ Motor actual working current
$I_{\text {mn }}$: Motor rated current
$I_{\text {mо }}$: Motor current without load

F12: Output voltage percentage
 factory setting: 100\%

Percentage of actual output voltage and rated output voltage
This parameter is for adjusting output voltage, output voltage=inverter rated output voltage \times output voltage percentage.

F13: Maximum frequency

factory setting: 50.00/500.0Hz

Section VI. Function Parameter Description

Allowable maximum frequency by Inverter's adjusting speed, also the base for setting acceleration/deceleration time.
Setting this parameter should consider the characteristic and ability of motor.

F14: Basic frequency

factory setting: $50.00 / 500.0 \mathrm{~Hz}$
This function is for motors with different base frequency
Basic V/F feature curve:

F15: Carrier frequency factory setting: refer to following table
This function is chiefly used to improve the possible noise and vibration during the operation of frequency converter. When carrier frequency is higher, the output current has better wave, the torque is great at lower frequency and the motor produces light noise. So it is very suitable for use in the applications where great torque is output at low frequency quietly. But in these applications, the damage to the switches of main components and the heat generated by the inverter are great, the efficiency is decreased and the output capacity is reduced. At the same time, more serious radio interference is resulted and special attention must be paid for application where very low EMI is needed, and filter option can be used if necessary. Another problem for application of high carrier frequency is the increase of capacitance-leakage current. The protector for leakage current may invalidate function, and over current is also possibly caused.
When low carrier frequency is applied, the case is almost contrary to the above-mentioned one.
Different motor has different reflection to the carrier frequency. The best carrier frequency is gained after regulation according to actual conditions. The higher the motor capacity is, the lower the carrier frequency should be selected.
The company reserves the right to limit maximum carrier frequency as following:

Carrier frequency	Motor noise	Electric disturbance	Switch dissipation
1.0 kHz	Great Small	Small Great	Small
8.0 kHz			
16.0 kHz			Great

The relation between carrier frequency and the power is expressed as following:

Section VI. Function Parameter Description

Power (kW)	$0.4 \sim 18.5$	$22 \sim 30$	$37 \sim 55$	$75 \sim 110$	$132 \sim 200$	220 above (including 220)
Carrier frequency (Hz)	8.0 k	7.0 k	4.0 k	3.6 k	3.0 k	2.5 k

Note: The higher carrier frequency causes the higher converter heat.

F16: Lower limit frequency Lower limit of output frequency F17: Upper limit frequency
factory setting: $0.00 / 0.0 \mathrm{~Hz}$
factory setting: 50.00/500.0Hz
Upper limit of output frequency.
When the frequency setting command is greater than upper limit, the operation frequency is the upper limit. When the frequency setting command is below the lower limit, the operation frequency is the lower limit. When starting the standstill motor, the frequency converter's output is accelerated towards the lower limit or set value from 0 Hz according to the acceleration time 1 . When the motor stops, the running frequency starts to decelerate towards OHz according to the deceleration time.

F18: S curve start time at the acceleration step F19: S curve stop time at the acceleration step F20: S curve start time at the deceleration step F21: S curve stop time at the deceleration step
factory setting: 0.0\% factory setting: 0.0\% factory setting: 0.0\% factory setting: 0.0\%

1. Slope of output frequency is enhanced from 0 to maximum level.
2. Slope of output frequency at the constant level.
3. Slope of output frequency is reduced from maximum level to 0 .

Section VI. Function Parameter Description
If setting S curve acceleration/deceleration, the acceleration/deceleration time is calculated as:
Acceleration time=Selected acceleration time+ (S feature time at the beginning of acceleration $+S$ feature time at the end of acceleration) $\times 2$
That is: Acceleration timeT1=F09+ ((F09×F18) + (F09×F19)) $\times 2$
Deceleration time=Selected deceleration time+ (S feature time at the beginning of deceleration $+S$ feature time at the end of deceleration) $\times 2$
That is: Deceleration timeT2=F10+ ($\mathrm{F} 10 \times \mathrm{F} 20$) $+(\mathrm{F} 10 \times \mathrm{F} 21)) \times 2$
F22: Minimum running frequency factory setting: $0.00 / 0.0 \mathrm{~Hz}$
Inverter stops when the set frequency is lower than the minimum running frequency, that is: set frequency is 0.0 Hz when set frequency is lower than the minimum running frequency.
"Minimum running frequency" is in priority rather than "Lower frequency". "Lower frequency" is in priority only with the set minimum running frequency 0 Hz .

Minimum frequency<lower frequency

Minimum frequency>lower frequency

F23: DC braking current

This parameter set the percentage of DC braking current at DC braking. It is based on the rated current (inverter's rated current percentage). When setting it, do increase the value gradually until it provides enough braking torque.

F24: DC braking time when starting
 factory setting: 0.0 s

Standing time of DC braking voltage when starting.
F25: DC braking time when stopping
factory setting: 0.0 s Standing time of DC braking voltage when stopping.

F26: Braking start up frequency factory setting: $0.00 / .00 \mathrm{~Hz}$

When the frequency converter decelerates to this frequency, it stops the output of PWM waves, and then starts to output the D.C. brake wave.

stop braking (RUN \rightarrow STOP)

F27: Stop mode set factory setting: 0

When receiving "stop" command, it sets the stop mode according to this parameter.
0: Deceleration stop mode, according to the deceleration time set by this parameter, inverter decelerates to the lowest frequency and stops.
1: Free stop mode. "Stop" command to the inverter, it stops output, motor runs free until stops due to the effects of load inertia.

F28: Jog acceleration time

factory setting: 1.0 s
F29: Jog deceleration time
factory setting: 1.0s
Jog acceleration time defines the same step acceleration/deceleration

Actual jog time equals to the set acc/dec time multiples a time multiple which is decided by the tens digit of F56. Please refer to F56.
F30: Jog function set
factory setting: 0

End of jog	Tens digit	Description
Stop running	0	Stop running when jog ends
Reset to the status before jog	1	Reset to the status before jog
Direction	Unit	Descritption
Forward	0	Jog Forward
Reverse	1	Jog Reverse

F31: Jog frequency set

Jog frequency setting range is from lower limit frequency to upper limit frequency.

F32: Traverse running frequency f1
F33: Traverse running frequency $f 2$
F34: Traverse running difference $\triangle f$
F35: Traverse running timing T1
F36: Traverse running timing T2
factory setting: 40.00/400.0Hz factory setting: $\mathbf{2 0 . 0 0 / 2 0 0 . 0 H z}$ factory setting: $2.00 / \mathbf{2 0 . 0 H z}$ factory setting: 2.0s
factory setting: 2.0s

F37: Skip frequency 1
F38: Skip frequency 2
F39: Skip frequency 3

F40: Skip frequency range

factory setting: $0.00 / 0.0 \mathrm{~Hz}$ factory setting: $0.00 / 0.0 \mathrm{~Hz}$ factory setting: $0.00 / 0.0 \mathrm{~Hz}$ factory setting: $0.00 / 0.0 \mathrm{~Hz}$
During running, to skip resonance produced by the immanent resonance point in the machine system, skip mode can do this.
At most 3 resonance points can be set to skip

Skip frequency range is the up and down frequency range on the base of skip frequency.
During acc/dec, the output frequency could normally go through the skip
frequency area.
F41: Automatic voltage regulation

factory setting: 0

CPU automatically inspects the DC bus voltage and deal with it at the real time, when electric network voltage fluctuates, output voltage fluctuation is very small, and the V/F feature always is close to the setting state with rated input voltage. 0 : Invalid
1: Valid
2: Invalid but useless when deceleration
F42: Over voltage stall protection
factory setting: 1

0: Invalid
1: Valid
When this function is valid and the frequency converter decelerates, the motor generates voltage back to the inside of frequency converter due to the effects of load inertia. This will lead the voltage on direct current side to rise above the allowable max. Value, therefore, at this time the inverter will stop deceleration (output frequency remains unchanged) and will not decelerate until the voltage is below the set value.
This function should be set to 0 for B type frequency converter or frequency converter with external braking unit.

F43: current limit function
 factory setting: 0

0: Invalid
1: Valid
When this function is valid and the frequency converter accelerates, its output current will rise very quickly due to too fast acceleration or too heavy load of the motor. When the current exceeds the limited value (G/S: 140\% of the rated current; F: 120% of the rated current; $\mathrm{Z} / \mathrm{M} / \mathrm{T}: 170 \%$ of the rated current; $\mathrm{H}: 230 \%$ of the rated current), the frequency converter will stop acceleration while when the current is below the limited value, the converter will continue acceleration When this function is valid and the frequency converter runs steadily, its output current will rise very quickly due to too fast acceleration or too heavy load of the motor. When the current exceeds the limited value $(G / S$: 140% of the rated current; F: 120% of the rated current; $\mathrm{Z} / \mathrm{H} / \mathrm{T}: 170 \%$ of the rated current; $\mathrm{H}: 230 \%$ of the rated current), the frequency converter will reduce the output frequency, and when the current is below the limited value, the converter will accelerate
again to the setting value.

F44: Pick up selection

factory setting: 0
This parameter is used for selecting pick up mode
0 : Invalid. Start from OHz or starting frequency.
1: Pick up when power down. When inverter power down instantly and restarts, motor keeps running at the current speed and direction.
2: Pick up when start. When power on, inspects the motor speed and direction, runs at the current speed and direction.

power down track state

start track state

F45: Electronic thermal relay protection selection

factory setting: 1

This function is to protect the motor when overheat happens to the motor without other thermal relays. Inverter's some parameters calculate the motor's high temperature, meanwhile estimating whether the current would make the motor overheat or not. Inverter stops output and display the protection information when electronic thermal relay protection function is valid.
0 : Invalid

1: Valid

F46: Electronic thermal relay protection level
factory setting: refer to the below
The current is set by the inverter when diagnosing the over heat of the motor.
The protection takes effect in 1 minute when the current equals to the product of the motor's rated current multi-pled the value of F46, that is the actual current is F46 times of rated current.
The factory value is 120% for type F, 150% for type $G / S, 180 \%$ for type $Z / M / T$, 180% for type H .

F47: Power consuming braking selection
factory setting: 0
0 : Invalid
1: Safe mode
Only during the deceleration and inspection of DC bus voltage higher than the set value, this function takes effect.
2: General mode
Under any status, it takes effect only inspecting DC bus voltage higher than the set value.
Over voltage or over current probably occurs when inverter instantly decelerates or the load's fluctuation is big. This phenomenon occurs much easily when the load inertia is relatively big. Inside inverter DC high voltage is inspected over certain value, power consuming brake can be realized by output brake signal via external brake resistor.

F48: Fault reset times

factory setting: 0

During running, if over current (OC) or over voltage (OU) occurs, this function makes inverter automatically reset and run at the setting state when there was no fault. Reset times are based on this parameter, at most 10 times can be set. When it is " 0 ", automatic reset function is invalid after fault occurrence. But if DC main circuit's main relay fault MCC or lack voltage LU fault occurs, the automatic reset is not limited by this.
Restart and runs normally after fault for over 36 s , the previous fault rest times is set.
Fault last for over 10s then the fault reset function could not be executed.
F49: Fault reset time

factory setting: 1.0s

This function is for setting time interval of fault auto-reset. Inverter stops after fault, it takes more time.
For no-fault inspection than fault reset time, then fault auto-resets.

F50: Program running mode
factory setting: 0
0 : Single circulation.
1: Continuous circulation.
2: Single circulation, continuous running at step 7 speed, and stop when receiving STOP command.
The 3 program running modes are as below:
e.g. 1 Single ciruculation

e.g. 2 Continuous circulation

e.g. 3 Single circulation, as per the 7 step speed running mode

F51: Restart mode

factory setting: 0
Stop during program running and reset restart mode. (Including normal stop and fault reset)
0 : Runs at the step 1 speed.
tput

1: Runs at the speed before stopping.

F52: RST input signal selection factory setting: 0

0 : it is used as the reset input signal only in the fault state, and it is illegal in the normal state.
1: it is used as the external fault input signal in normal state and as the reset input signal in fault state.
As the external fault input signal, it is considered the fault is effective when RST and COM terminal is closed; As the RESET signal, it is considered the RESET signal is effective when the RST terminal is closed first and open then.

F53: Fan start temperature (options) factory setting: $0.0^{\circ} \mathrm{C}$

The temperature of the fan starts. Fan operates when the actual temperature is higher than this setting temperature.

F54: Motor running direction

factory setting: 0

0 : Forward command, motor forwards.
1: Forward command, motor reverses.

F55: Motor reverse forbidden

factory setting: 0
0 : Reverse is allowable.
1: Reverse is forbidden.

F56: Running time setting

Adjustment unit of actual running time. The unit describes the running time, the tens digit describes the acc time(line acc time, jog acc/dec time F09, jog acc time F28), the 100s digit describes the dec time(line dec time F10, jog dec time F29), the describtion is as below:

Acc/dec time	10s, 100s digit	Range(eg.F09, F10=3200.0)
$\times 1 \mathrm{~s}$	0	3200.0 s
$\times 30 \mathrm{~s}$	1	$3200.0 \times 30=96000 \mathrm{~s}=1600 \mathrm{~m}$
$\times 600 \mathrm{~s}$	2	$3200.0 \times 600=32000 \mathrm{~m}=533.33 \mathrm{~h}$
$\times 3600 \mathrm{~s}$	3	$3200.0 \times 3600=192000 \mathrm{~m}=3200 \mathrm{~h}$

F57: Percentage in energy saving running factory setting: 100\%
This parameter is for minimum output voltage percentage in energy saving running For constant torque running, inverter can calculate the optimized output voltage to the load according to the load state. Calculation is invalid during acceleration or deceleration. This function is to save energy by lower the output voltage and enhance the frequency factors, this parameter confirms the minimum reduced output voltage; if the parameter is set 100%, the energy saving running mode is closed.
If energy saving is effective, inverter's actual voltage output value=inverter's rated output voltage \times output voltage percentage \times energy saving output voltage percentage.

F58: FDT frequency set 1
factory setting: $0.00 / 0.0 \mathrm{~Hz}$ factory setting: $0.00 / 0.0 \mathrm{~Hz}$
When output signal select(013-018) 14, inverter's output frequency arrives or accesses FDT frequency set 1, output signal terminal actions; inverter's output frequency is lower than the set frequency, output signal does not action.

When output signal select(o13-018) 15, firstly FDT frequency set 1 inspected,
inverter's output frequency arrives or accesses FDT frequency set 1, output signal terminal actions; after terminal action, FDT frequency set 2 inspected, inverter's output frequency is lower than FDT frequency set 2, output signal terminal does not action.
e.g. FDT frequency set 1 is 35 Hz , FDT frequency set 2 is 30 Hz , output signal terminal actions as below:

ON express signal action; OFF express no signal action

F60: Frequency inspection range factory setting: $0.00 / 0.0 \mathrm{~Hz}$

This parameter defines frequency inspection range for adjusting I/O output function: 11 set frequency reaching the inspection range.

F61: Load type
 factory setting: 0

The parameter defines the load type, the system automatically adjust the parameters according to the load type to satisfy different requirement of different load. Please inquir Powtran technician to select the right load type. Wrong load type may damage the equipment.
0 : general
1: pump
2. Blower fan

3: Plastic jetting mould machine
4: Braiding machine
5: Hoister
6: Pumping jack
7: Belt conveyor
8: Frequency conversion power supply
F61=8:
I Frequency conversion power supply output frequency adjust

| F04 | Frequency |
| :---: | :--- | :---: | :---: |
| Set mode | |

Section VI. Function Parameter Description

		$\mathrm{V} 2+\mathrm{I} 2$	3
		Keypad potentionmeter set	8

The output frequency of frequency conversion power supply can be set for the 5 modes.
I Selecting current limit function, but inverter would automatically lower the output
Voltage and keep the same frequency once the output current accesses the rated value.

F43	Current limit	Invalid	0
		Valid	1

Time of raising/lowering voltage

Time of raising/lowering voltage
F28
Jog acc. time
:---:
F29
s

I Frequency conversion power supply Voltage set percentage

P02	Feedback signal select	External terminal IF:0~20mA	0
		External terminal IF:4~20mA	1
		External terminal VF:0~10V	2
		External terminal VF:1~5V	3

10 could be monitored by F00: PID feedback value monitors the voltage set percentage $0.0 \% \sim 100.0 \%$ with correspondent max output voltage (1.15 multiples input voltage)
I Output voltage limit
Adjust the output voltage percentage, with correspondent max output capacity(to input voltage) \times F12

F12	O.P. voltage ratio

50~110
It sets the O.U protection to the load.
If load voltage needs 200 V , max voltage 210 V , input voltage 380 V , and F12 $=210 / 380=55 \%$
I Running mode
Adjustment of the acc/dec time could adjust the frequency acc/dec time.
Adjustment of F28, F29 could adjust the voltage raising time and voltage responding time.

time
| Application sample:

number	Design require	Set parameters	
1	Frequency conversion power supply	F12	55%

Section VI. Function Parameter Description

Wring:

U

9: Double pumps supply water under constant pressure
10: Three pumps supply water under constant pressure
11: Four pumps supply water under constant pressure
When F61=1, 9, 10, 11 Select water pump and F04=7 PID control, parameters change as below:
F70 CUR group parameters change as below:
1: CUR group parameters range changes accordingly, F04=7 PID regulate mode is canceled and the range will change the original mode.
2: CUR group defaulted parameters remain, if F04=7 PID regulate mode, set the CUR group parameters to make PID work normally.
3: LCD keypad display still describes the original CUR group parameters, there maybe inconvenience but not serious so it would not be modified.
4: PID set the constant filter time is decided by I/O V2 and I filter time 000, 005
5: PID feedback the filter time which is decided by C00

Ref	LCD keyboard explanation	Range of set value	Unit	Factory setting	Y / N
C00	Detect filter time	$2 \sim 200$	ms	10	Y
C01	Start Pressure percentage	$2 \sim 100$	$\%$	10	Y
C02	Stop pressure percentage	$0 \sim 150$	$\%$	150	N
C03	Maximum allowable	$0 \sim 20$	$\%$	0	N
C04	Arriving high pressure value	$0 \sim 100.0$	$\%$	80.0	Y
C05	Arriving low pressure value	$0 \sim 100.0$	$\%$	60.0	Y

COO Defect filter tim

Feedback the constant filter time of VF, IF, feedback a little if C00 is increased; feedback a lot if COO is reduced.

C01 Start Pressure percentag

Start pressure=Start pressure percentage X set pressure
Feedback pressure is lower than start pressure and it keeps more than 5 seconds, inverter restarts in stop condition.
This parameter is to avoid inverter stop and start frequently

C02 Stop pressure percentage

Stop pressure=Stop pressure X set pressure
Feedback pressure is higher than stop pressure and it keeps more than 10seconds, inverter stops in running condition.
The smaller the parameter is, the easier it would stop. If it is set 100%, the stop pressure and start pressure control function is invalid.
C01, C02 group is to control system control (energy saving) running and water pressure adjustment in the water-supplying system.
e.g.:

Set pressure=50\%
Start pressure percentage 20\%, start pressure=set pressure X start pressure percentage=10\% Stop pressure percentage 80%, stop pressure=set pressure X stop pressure percentage= $=40 \%$ System running condition: start pressure is lower than stop pressure, otherwise inverter stops.

C03 Maximum deviation value allowable

|Set value - feedback value|కMaximum deviation value allowable, PID controller stop action.
This parameter is for the system which requires precision not so much but avoids frequent adjustment.

C04 Arriving high pressure value

Feedback pressure arrives or excesses the arriving high pressure set by this parameter, I/O output function terminal select 25 arriving pressure and output arriving signal.

C05 Arriving low pressure value

Section VI. Function Parameter Description
Feedback pressure arrives or is lower than the arriving low pressure set by this parameter, I/O output function terminal select 26 arriving pressure and output arriving signal.
F71 SPD group parameters change as below:
1: CUR group parameters range changes accordingly, F04=7 PID regulate mode is canceled and the range will change the original mode.
2: CUR group defaulted parameters remain, if F04=7 PID regulate mode, set the CUR group parameters to make PID work normally.
3: LCD keypad display still describes the original CUR group parameters.

d00	Water supplying timing	$1 \sim 200$	Hour	10	Y
d01	Timing the interval time of shifting the pumps	$0.01 \sim 100.00$	Hour	0.25	Y
d02	Time-lapse of electromagnetism on and off	$0.000 \sim 1.000$	S	0.000	N
d03	Estimating time of changing pump	$0 \sim 1000$	S	100	N

Set the time of the inverters supplying water under constant pressure. After the inverter starts, when the running time arrives such setting time, it will stop automatically and wait for the next run command. If $\mathrm{d} 00=200$, water supplying timing is canceled.
.d01: Timing the interval time of shifting the pumps
Control the shifting way and time
.d01=100.00 hours, d01 function is canceled.
.d01 $=0.01 \sim 100.00$, it runs stably for certain time ($0.01 \sim 100.00$), inverter will shift the pump according the opening firstly or closing firstly to ensure each pump could run for equal chance and equal time, and avoid some pumps rust if it does not run for long time.
E.g. pump A, pump B, pump C

After first shift: pump B, pump C, pump D
After second shift: pump C, pump D, pump A
.d02: Time-lapse of electromagnetism on and off
It is the time-lapse of electromagnetism on and off while making 1 pump (drive motor) changes from frequency conversion to power frequency, or power frequency to frequency conversion.

It is to avoid the inverter's output short-circuited with the AC power frequency because of the slow action of electromagnetism on and off.
.d03: Estimating time of changing pump
Estimate the time when inverter's output frequency arrives upper frequency until the pump (drive motor) quantity increased.

Or estimate the time when inverter's output frequency arrives lower frequency until the pump (drive motor) quantity reduced.

The time more or less depends on the pressure changes quickly or slowly. It had be better be shorter during stable range.

Inverter will add or reduce the pumps according to the stopping firstly or starting firstly to ensure each pump could have chance to run and avoid some pumps rust if it does not run for long time. If each pump could run for equal chance and equal time, set d01.

Add pumps order: pump $A \rightarrow$ pump $B \rightarrow$ pump $C \rightarrow$ pump D
Reduce pumps order: pump $D \rightarrow$ pump $C \rightarrow$ pump $B \rightarrow$ pump A
If current state: pump A, pump B, pump C
After reducing pumps: pump A, pump B
After adding pumps: pump A, pump B, pump D,
After reducing pumps: pump A, pump B After reducing pumps: pump A

After adding pumps: pump A, pump C,
After adding pumps: pump A, pump C, pump D,
After adding pumps: pump A, pump C, pump D, pump B
12: Torque control
This function is valid under F01=2 vector contro
Torque setting way:
It is the same with the original frequency setting way, such function is to set analogy set torque with the setting frequency.
Torque setting display: $\mathrm{F} 00=14$ set torque
Set torque=Set frequency/maximum frequency X upper torque
Set torque range:
0~C04 upper torque
E.g. Set torque=40.0\%

Torque setting way: F04=1 V2 set by potentionmeter
1~10V 1~maximum torque.000, 001, 002 are factory setting
Torque setting range: 0~80.0\%. C04=80.0\%
Set torque $=40.0 / 80.0 \% *(10 \mathrm{~V}-1 \mathrm{~V})+1 \mathrm{~V}=5.5 \mathrm{~V}$

13: regulated power supply
I Adjust regulated power supply output frequency
Adjust regulated power supply output frequency

F04	Fre. Set modes	Keypad or RS485	0
		V 2	1
		I 2	2
		$\mathrm{~V} 2+\mathrm{I} 2$	3
		Keypad potentionmeter set	8

Regulated power supply output frequency could be set by such 5 modes
1 Regulated power supply set max voltage

b02	Motor rated vol.	$100 \sim 1140 \mathrm{~V}$

Selecting current limit function, but inverter would automatically lower the output
Voltage and keep the same frequency once the output current accesses the rated value

I Time of raising/lowering voltage
Time of raising/lowering voltage

F28	Jog acc. time	$0.1 \sim 64.0$	s	5.0	N
F29	Jog dec. time	$0.1 \sim 64.0$	s	5.0	N

Regulated power supply Voltage set percentage

9 could be monitored by F00: PID feedback value monitors the voltage set percentage

Section VI. Function Parameter Description
0.0\%~100.0\% with correspondent voltage 0~b02

I Regulated power supply Voltage feedback percentage

P02	Feedback signal select	External terminal IF:0~20mA	0
		External terminal IF:4~20mA	1
		External terminal VF:0~10V	2
		External terminal VF:1~5V	3

10 could be monitored by F00: PID feedback value monitors the voltage set percentage $0.0 \% \sim 100.0 \%$ with correspondent set voltage 0~b02
I Output voltage limit
Adjust the output voltage percentage, with correspondent max output capacity(to input voltage) \times F12

F12	O.P. voltage ratio	$50 \sim 110$
Adjust PID output limit, max output voltage $=$ max input voltage \times P01 \times F12		
P01	Output fre limit	$0 \sim 110$

Generally, only adjust F12 and P01 could keep factory setting 100\%.
It sets the protection to the load when the set regulated power supply out of the PID control (set, feedback signal invalid).
If load voltage needs 200 V , max voltage 210 V , input voltage 380 V , and
$\mathrm{F} 12=210 / 380=55 \%$
I Running mode
Adjustment of the acc/dec time could adjust the frequency acc/dec time
Adjustment PID and F28, F29 could adjust the voltage raising time and voltage responding time.

PID adjustment:
Respond fast, raise P07, system will oscillate if P07 is too large.
Respond fast, raise P05, system will oscillate if P05 is too small.
Advance voltage regulation precision, raise P07, reduce P05.
Adjust differential time P06, reduce the time of adjusting the system, complete PID control can be set 0 .
I Application sample:

number	Design require	Set parameters

Section VI. Function Parameter Description

1	Stabilized voltage supply output voltage200V, maximum voltage<210V.	F12	55\%
		F28	5s
		F29	5s
		F61	13
		P01	100\%
		P04	50.0\%
2	Stabilized voltage supply frequency 400 Hz .	F03	1
		F13	400.0 Hz
		F17	400.0 Hz
		020	400.0 Hz
3	Frequency set mode is keypad set.	F02	400.0 Hz
		F09	5s
		F10	5s
		F04	0
4	Output voltage set mode 0~10V.	P03	3
5	Output voltage feedback mode $0 \sim 10 \mathrm{~V}$	P02	2
6	Regulated power supply set max voltage 400V	b02	400 V

Wiring:

Frequency conversion regulated power supply \quad F61 $=13$

14: constant current power supply

Constant current power supply output frequency adjustment

F04
Fre. Set modes

Keypad or RS485	0
V 2	1
I 2	2
$\mathrm{~V} 2+\mathrm{I} 2$	3
Keypad potentionmeter set	8

Constant current power supply output frequency could be set by such 5 modes.
I V set max current

Section VI. Function Parameter Description

b01	Motor rated cur.	$30 \% \sim 120 \%$ rated current of inverter
Selecting current limit function, but inverter would automatically lower the output		

F43	Current limit	Invalid	0
		Valid	1

I

F28	Jog acc. time	$0.1 \sim 64.0$	S	5.0	N
F29	Jog dec. time	$0.1 \sim 64.0$	S	5.0	N

I Constant current power supply set percentage

P03	setting signal select	External terminal I2:0~20mA	0
		External terminal I2:4~20mA	1
		External terminal V2:0~10V	2
		Keypad input	3
		RS485 input	4
		Keypad potentionmeter set	5

9 could be monitored by F00: PID feedback value monitors the voltage set percentage the set current range is $0.0 \% \sim 100.0 \%$
I Output voltage limit
Adjust the output voltage percentage, with correspondent max output capacity(to input voltage) \times F12

F12	O.P. voltage ratio

50~110
Adjust PID output limit, max output voltage=max input voltage \times P01×F12
P01
Output fre limit \square 0~110
\qquad
Generally, only adjust F12 and P01 could keep factory setting 100\%.
It sets the protection to the load when the set regulated power supply out of the PID control (set, feedback signal invalid).
If the max voltage that load voltage requires is 250 V , input voltage 380 V , and $\mathrm{F} 12=$ 250/380=66\%
I Running mode
Adjustment of the acc/dec time could adjust the frequency acc/dec time.
Adjustment PID and F28, F29 could adjust the voltage raising time and voltage responding time.

PID adjustment:
Respond fast, raise P07, system will oscillate if P07 is too large.
Respond fast, raise P05, system will oscillate if P05 is too small.
Advance voltage regulation precision, raise P07, reduce P05.
Adjust differential time P06, reduce the time of adjusting the system, complete PI control can be set 0 .

number	Design require		eters
1	Output current is 16A, rated current is 32 A , maximum voltage $<250 \mathrm{~V}$.	F12	66\%
		F28	5s
		F29	5s
		F61	14
		P01	100\%
2	frequency 400 Hz .	F03	1
		F09	5s
		F10	5 s
		F13	400.0 Hz
		F17	400.0Hz
		020	400.0Hz
3	Frequency set mode is keypad set.	F02	400.0Hz
		F04	0
4	Output voltage set mode 0~10V.	P03	3
5	Constant current power supply set max current 32A	b01	32A

Wiring:

(

F62: Terminal control modes

0 : standard running contro
1: Two-line running control
2: three-line running control 1
3: three-line running control 2
4: three-line running control 3
e.g.: Standard running control

e.g.: Two-line running control

e.g.: three-line running control 1/2/3

MSS terminal assign:

F62 terminal control mode	value	stop terminal	$\mathrm{F} 63=1 / 2$	$\mathrm{~F} 63=3$
three-line running control 1	2	SS3	SS1/SS2 realize three Segment	JOG reverse forbid

64

Section VI. Function Parameter Description

			speed/acceleration	
three-line running control 2	3	SS2	Mul-segment speed/acceleration is invalid	SS3 JOG reverse
three-line running control 3	4	SS1	Mul-segment speed/acceleration is invalid	SS3 JOG reverse

Note: When terminal running control select 3-point running control (F62=2), if. F63 is1 or 2, SS1/SS2 executes 3-step speed/acceleration running, SS3 is only for 3-point running control; if.F63 is 3, SS3 is for jog reverse control in priority.

F63: MSS terminal function selection

factory setting: 0

This parameter can control MSS multi-step speed or MSS multi-step acceleration.
0 : Invalid.
1: MSS multi-step speed control. It is valid only when F04=0/1/2/3, multi-step speed in priority.
Level triggers, valid in low level.
2: MSS multi-step acceleration control. It is valid only when $\mathrm{F} 04=0 / 1 / 2 / 3 / 8$. Level triggers, valid in low level.
3: Jog forward/reverse control.
Jog reverse running with SS3 and COM short circuited, Jog forward running with JOG and COM short circuited, previous set JOG direction is invalid. Level triggers, valid in low level.
Note: F62=2 Terminal control mode is 3-point running control, SS3 is for jog forward/reverse control in priority.
4: Frequency setting mode switch
OFF when SS1, SS2, SS3 open to COM; ON when SS1,SS2,SS3 short circuited to COM.

SS3	SS2	SS1	Frequency setting mode switch
OFF	OFF	OFF	Program running (F04=5) Run at spped 1(F51=0)
OFF	OFF	ON	I2 (F04=2)
OFF	ON	OFF	V2(F04=1)
OFF	ON	ON	PID adjustment (F04=7)
ON	OFF	OFF	Program running(F04=5) Running at the speed before stop(F51=1)
ON	OFF	ON	V2+I2(F04=3)
ON	ON	OFF	Keyboard or RS485
ON	ON	ON	Keyboard petentionmeter

5: Upper torque shifted (Valid when F61=12 torque control mode)
5: Upper torque shifted (Valid when F61=12 torque control mode)

SS3	SS2	SS1	Upper load shifted
ON	OFF	OFF	Upper load shifted set by C04
ON	OFF	ON	Upper load shifted set by H00 \& C04
ON	ON	OFF	Upper load shifted set by H01\& C04

Section VI. Function Parameter Description

$$
\begin{array}{|c|c|c|c|}
\hline \text { ON } & \text { ON } & \text { OFF } & \text { Upper load shifted set by H02 \& C04 } \\
\hline
\end{array}
$$

$\mathrm{H} 00, \mathrm{H} 01, \mathrm{H} 02$ is for upper torque percentage:
Upper torque=H00 (H01 or H02)/max frequency x O04 x 100\%
Set torque value=set frequency/max frequency x upper torque
E.g. \max frequency $=130 \mathrm{~Hz}, \mathrm{C} 04=200 \%$
$\mathrm{H} 00=100 \mathrm{~Hz}$, and upper torque=100/130 $\times 200 \%=153.8 \%$
$\mathrm{H} 01=80 \mathrm{~Hz}$, and upper torque $=80 / 130 \times 200 \%=123.0 \%$
$\mathrm{H} 02=40 \mathrm{~Hz}$, and upper torque $=40 / 130 \times 200 \%=61.5 \%$
E.g. set 20 Hz , the set torque is:

SS3	SS2	SS1	Upper torque	Set torque
ON	OFF	OFF	200.0%	$20 / 130 \times 200.0=30.7$
ON	OFF	ON	153.8%	$20 / 130 \times 153.8=23.6$
ON	ON	OFF	123.0%	$20 / 130 \times 123.0=18.9$
ON	ON	OFF	61.5%	$20 / 130 \times 61.5=9.4$

Note: If F01=2 vector control+F61=12 torque control, SS3 terminal could shift between the vector speed control and vector torque control.
SS3=ON: vector torque control
SS3=OFF: vector speed control
6: MSS time running
F63=6:MSS time running function.
Running time is setted by MSS terminal pulse signal. Running time is refreshed with the last terminal pulse signal, and is not cumulative.running time includes accelerate time,barring decelerate time. PRI is SS3>SS2>SS1.

Running parameter			SS1	SS2	SS3
F04	Keyboard and RS485	0	H00	H01	H02
	V2	1	V2	V2	V2
	12	2	12	12	12
	V2+12	3	V2+12	V2+12	V2+12
	Keypad potentionmeter	8	Keypad potentionmeter setting		
	V2 Forward/Reverse	9	V2 Forward/Reverse setting		
	Keypad potentionmeter FWD/REV	10	Keypad potentionmeter setting		
Accelerate/decelerate time			H14/H15	H16/H17	$\begin{gathered} \hline \mathrm{H} 18 / \mathrm{H} 1 \\ 9 \end{gathered}$
Running time			H07	H08	H09

7: Control mode shifted

Running parameters			SS1	SS2
F01 $=0: V$ F control	0 Keypad or potentionmeter	0	0	0
	1step speed	1	0	0
	2 step speed	0	1	0
F01=2: Vector control+ PG	3 Ktep speed	1	1	0
	0 Keypad or potentionmeter	0	0	1
	1step speed	1	0	1
	2 step speed	0	1	1

8: Reset program running segment
F04=5 Program running, reset the current segments with SS3

SS3	Reset program running segment
OFF	Normal program running
ON	program running segment reset to the parameters of the first segment

F64: Polarity of input terminal
time
factory setting: 0

\section*{	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
7	6	5	4	3	2	1	0	}

7	6	5	4	3	2	1	0

Ret		Polarity of Input Terminal
0	Low level valid(close)	Low level valid(close)
	Falling edge valid, rising edge invalid	Falling edge valid, rising edge invalid
1	High level valid(open)	High level valid(open)
	Rising edge valid, falling edge invalid	Rising edge valid, falling edge invalid

$2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$

F64 $=$ bit $^{*} 2^{7}+$ bit $^{*} 2^{6}+\cdots \cdots+$ bit1 $^{*} 2^{1}+$ bit0 $^{*} 2^{0}$ $=1^{*} 2^{7}+1^{*} 2^{6}+0^{*} 2^{5}+0^{*} 2^{4}+0^{*} 2^{3}+0^{*} 2^{2}+$
$1^{*} 2^{1}+1^{*} 2^{0}$
$=128+64+2+1$
$=195$

F65: Monitor Select
F66: Monitor Select
F65 and F66 are to select the second and the third monitor subject range from 0~15 (same as the monitor subject of F00), valid when JP6E7000 and JP6C7000 keypads are used. Please refer to the operation of the keypad in the section III.
F67: V/F curve set
F68: MSS speed contro
F69: I/O group select
F70: CUR group select
F71: SPD group select
F72: PID group select
F73: SYS group select
F74: MOT group select
Selecting one of these above groups as expected, press PRG running into the relative group.

6-2. Other parameters

6-2-1. F67 V/F curve set [V/F]

F1 F2 F3 F4 F5 F6 F7 F8 output frequency
U00: V/F set frequency 1
factory setting: $5.00 / 50.0 \mathrm{~Hz}$
User set the first frequency of V/F curve corresponding with V1.
U01: V/F set voltage 1
factory setting: 5\%

User set the first voltage percentage of V/F curve corresponding with F1, by the reference of inverter's rated output voltage 100\%.
U02: V/F set frequency 2
factory setting: $\mathbf{1 0 . 0 0 / 1 0 0 . 0 H z}$
User set the second frequency of V/F curve corresponding with V2.
U03: V/F set voltage 2
factory setting: 10\%
User set the second voltage percentage of V/F curve corresponding with F2, by the reference of inverter's rated output voltage 100\%.
U04: V/F set frequency 3
factory setting: $15.00 / 150.0 \mathrm{~Hz}$ User set the third frequency of V/F curve corresponding with V3.
U05: V/F set voltage 3
factory setting: 15\%
User set the third voltage percentage of V/F curve corresponding with F3, by the reference of inverter's rated output voltage 100\%.
U06: V/F set frequency 4
factory setting: $\mathbf{2 0 . 0 0} \mathbf{2 0 0 . 0 H z}$
User set the fourth frequency of V / F curve corresponding with V4.
U07: V/F set voltage 4
factory setting: 20\%

User set the fourth voltage percentage of V/F curve corresponding with F4, by the reference of inverter's rated output voltage 100\%.
U08: V/F set frequency 5 factory setting: $\mathbf{2 5 . 0 0 / 2 5 0 . 0 \mathrm { Hz }}$
User set the fifth frequency of V/F curve corresponding with V5.
U09: V/F set voltage 5
factory setting: 25\%
User set the fifth voltage percentage of V/F curve corresponding with F5, by the reference of inverter's rated output voltage 100\%.
U10: V/F set frequency 6
factory setting: $\mathbf{3 0 . 0 0 / 3 0 0 . 0 H z}$
User set the sixth frequency of V/F curve corresponding with V6.
U11: V/F set voltage 6
factory setting: 30\%
User set the sixth voltage percentage of V/F curve corresponding with F6, by the reference of inverter's rated output voltage 100%.

Section VI. Function Parameter Description
U12: V/F set frequency 7
factory setting: $35.00 / 350.0 \mathrm{~Hz}$
User set the seventh frequency of V/F curve corresponding with V7.
U13: V/F set voltage 7
factory setting: 35\%

User set the seventh voltage percentage of V/F curve corresponding with F7, by the reference of inverter's rated output voltage 100\%
U14: V/F set frequency 8
factory setting: $\mathbf{4 0 . 0 0 / 4 0 0 . 0 H z}$
User set the eighth frequency of V/F curve corresponding with V8.
U15: V/F set voltage 8 factory setting: 40\%
User set the eighth voltage percentage of V/F curve corresponding with F8, by the reference of inverter's rated output voltage 100%.

6-2-2. F68 MSS speed control [MSS]

H00: 1X Multi-step speed 1X
H01: 2X Multi-step speed 2X
H02: 3X Multi-step speed 3X
H03: 4X Multi-step speed 4X
H04: 5X Multi-step speed 5X
H05: 6X Multi-step speed 6X
H06: 7X Multi-step speed 7X

Set the frequency of program running and the 7-step speed respectively, Achieve 7-step speed by short-circuit the terminal SS1, SS2, SS3 with COM combinatorially.

The definition of terminal multi-step speed is as follow:

ON=connect with COM	OFF=disconnect with COM						
Terminal	$1 X$	$2 X$	$3 X$	$4 X$	$5 X$	$6 X$	$7 X$
SS1	ON	OFF	ON	OFF	ON	OFF	ON
SS2	OFF	ON	ON	OFF	OFF	ON	ON
SS3	OFF	OFF	OFF	ON	ON	ON	ON

When SS1, SS2, SS3 is open to COM at the same time:

F04	Setting frequency	Accelerate time	Decelerate time
0	Keyboard setting	F09	F10
1	V2 setting	F09	F10
2	I2 setting	F09	F10
3	V2/I2 setting	F09	F10

H07: T1 Multi-step speed 1 running time T1 H08: T2 Multi-step speed 2 running time T2 H09: T3 Multi-step speed 3 running time T3
factory setting: 2.0s factory setting: 2.0 s factory setting: 2.0 s

H10: T4 Multi-step speed 4 running time T4 H11: T5 Multi-step speed 5 running time T5 H12: T6 Multi-step speed 6 running time T6 H13: T7 Multi-step speed 7 running time T7
factory setting: 2.0s factory setting: 2.0s factory setting: 2.0s factory setting: 2.0s Actual acc/dec time equals to the set acc/dec time multiples a time multiple which is decided by the tens digit of F56. Please refer to F56.

H14: Acceleration time at1

H15: Deceleration time dt1
H16: Acceleration time at2
H17: Deceleration time dt2
H18: Acceleration time at3
H19: Deceleration time dt3
H20: Acceleration time at4
H21: Deceleration time dt4
H22: Acceleration time at5
H23: Deceleration time dt5
H24: Acceleration time at6
H25: Deceleration time dt6 H26: Acceleration time at7

H27: Deceleration time dt7
 dt7

factory setting: 10.0s
都 needed to reach the speed, respectively depending on the acceleration time for acceleration or on the deceleration time for deceleration, but the time is not the actual time needed. Actual acc/dec time equals to the set acc/dec time multiples a time multiple which is decided by the tens digit of F56. Please refer to F56.
Definite acceleration and deceleration time for multi-step speed.

at1: Step 1 acceleration time dt2: Step 2 deceleration time t3: Step 3 deceleration time H28: Multi-step speed 1 running direction factory setting: 0

Section VI. Function Parameter Description

H29: Multi-step speed 2 running direction H30: Multi-step speed 3 running direction H31: Multi-step speed 4 running direction H32: Multi-step speed 5 running direction H33: Multi-step speed 6 running direction H34: Multi-step speed 7 running direction
factory setting: 0 In program multi-speed I running, the digit parameters decide the direction of each speed.

Running direction	Setting value
forward	0
reverse	1

When running control mode $\mathrm{F} 05=0 / 1 / 2$, these parameters decide the direction of each speed.
When running control mode $\mathrm{F} 05=3$, the setting value and terminal FWD/REV decide the direction of each speed together. FWD is first.

FWD=1 Running direction	REV=1 Running direction	Setting value
forward	reverse	0
reverse	forward	1

The parameter adjusts Actual running time unit. The digit determines running direction, the tens place determines running time (multi-step running time) unit, the hundred's place determines acceleration time unit, the kilobit determines deceleration time unit. Take Multi-step speed 1 for example, as following:

Acc/dec time	Tens/hundred's place	range (for example F09=3200.0)
$\times 1 \mathrm{~s}$	0	3200.0 s
$\times 30 \mathrm{~s}$	1	$3200.0 \times 30=96000 \mathrm{~s}=1600 \mathrm{~min}$
$\times 600 \mathrm{~s}$	2	$3200.0 \times 600=32000 \mathrm{~min}=533.33 \mathrm{~h}$
$\times 3600 \mathrm{~s}$	3	$3200.0 \times 3600=192000 \mathrm{~min}=3200 \mathrm{~h}$
Running time	digit	range (for example H07=3200.0)
$\times 1 \mathrm{~s}$	0	3200.0 min
$\times 10 \mathrm{~s}$	1	$3200.0 \times 10=32000 \mathrm{~s}=533.33 \mathrm{~min}$
$\times 100 \mathrm{~s}$	2	$3200.0 \times 100=320000 \mathrm{~s}=5333.33 \mathrm{~min}$
$\times 1000 \mathrm{~s}$	3	$3200.0 \times 1000=3200000 \mathrm{~s}=888.88 \mathrm{~h}$

6-2-3. F69 Input/output parameter [I/O]

000: filter time of V2 signal input

factory setting: 10ms

It may be $2 \sim 200 \mathrm{~ms}$. If the time is too long, setting frequency change is steady, but response speed will become bad; if the time is too short, setting frequency stability become badly, but response speed will be rapider.

001: V2 minimum input voltage

factory setting: 0.00 V
The minimum input voltage of input terminal V 2 , may be any value between 0~V2 maximum input voltage.

o02: V2 maximum input voltage

factory setting: $\mathbf{1 0 . 0 0} \mathrm{V}$
The maximum input voltage of input terminal V2, may be any value between V2 minimum input voltage to 10 V .
003: I input filter time
factory setting: $\mathbf{1 0 m s}$
It may be $2 \sim 200 \mathrm{~ms}$. If the time is too long, setting frequency change is steady, but response speed will become bad; if the time is too short, setting frequency stability become badly, but response speed will be rapider.
004: I input minimum current
factory setting: 0.00 mA
The minimum input current of input terminal I , may be any value between $0 \sim \mathrm{l} 2$ maximum current
005: I input maximum current
factory setting: 20.0 mA
The maximum input current of input terminal 12 , may be any value between I2 minimum current to 20.00 mA .
e.g. V2 input $1 \sim 5 \mathrm{~V}, \circ 01=1 \mathrm{~V}, 002=5 \mathrm{~V}$; 12 input $4-20 \mathrm{~mA}, \circ 04=4 \mathrm{~mA}, 005=20 \mathrm{~mA}$

006:DA1 output terminal factory setting: 0 *007:Reserved

Value	Output	Output signal range define
0	No Function	No output
1	Set frequency	$0 \sim$ max. frequencuy
2	Actual frequency	$0 \sim$ max. frequencuy
3	Actual current	G/S: 200% of rated current, F: 150% of rated current, M/Z/T: 250% of rated current, H: 300% of rated current,
4	Output voltage	$0 \sim 135 \%$ of rated input voltage
5	Bus voltage	$0 \sim 135 \%$ of BUS line voltage
6	IGBT temperature	$0 \sim 80^{\circ} \mathrm{C}$
7	Output power	$0 \sim 200 \%$
8	Output speed	$0 \sim$ max. speed

Note: Each output terminal with 2 selection: voltage output ($0 \sim 10 \mathrm{~V}$) and current output ($0 \sim 20 \mathrm{~mA}$), the default selection is voltage output. Selecting voltage output, short circuit DA1V/DA2V of JP3/JP4 (on the control card); selecting current output, short circuit DA1C/DA2C of JP3/JP4 (on the control card).

012: DFM multiple adjustment

factory setting: 1
It defines the driver's output terminal (DFM-ACM) output frequency (10VDC, working cycle=50\%) signal, also the output signal of SPA, SPA, SPC and SPD. Output impulse per second=output frequency $\times 012$.
DFM multiple set should be satisfied:maximum output frequency $\times 012<5000 \mathrm{~Hz}$.
013: Output signal selection 1
014: Output signal selection 2
015: Output signal selection 3
016: Output signal selection 4
017: Output signal selection 5
018: Output signal selection 6
factory setting: 0
factory setting: 0
factory setting: 0
factory setting: 0
factory setting: 1
factory setting: 8

Section VI. Function Parameter Description

1	Fault alarm
2	Over current inspection
3	Over load inspection
4	Over voltage inspection
5	Lack voltage inspection
6	Low load inspection
7	Over heat inspection
8	Running state with command
9	PID feedback signal abnormity
10	Motor reverse
11	Set frequency arrival
12	Upper limit frequency
13	Lower limit frequency
14	FDT frequency 1 arrival
15	FDT frequency level inspection
16	0 speed running
17	Position arrival
18	PG fault
19	Program running 1 cycle finished
20	Speed pursue mode inspection
21	Running state without command
22	Inverter reverse command
23	Deceleration running
24	Acceleration running
25	High pressure arrival (Valid when F61=1,F04=7)
26	Low pressure arrival (Valid when F61=1,F04=7)
27	Inverter's rated current arrival
28	Motor's rated current arrival
29	Output lower frequency arrival
30	FDT frequency setting 2 arrival
31	Fault code output (013~016 valid)
32	Digits of frequency output (013~016 valid)

013~016=31, SPA, SPB, SPC, SPD terminal outputs are:

Item	LED display	Fault signal	Output terminal			
	SPD	SPC	SPB	SPA		
1	OC_C	Over current signal from current detected circuit	OFF	OFF	OFF	ON
2	OCFA	Over current signal from drive circuit	OFF	OFF	ON	OFF
3	OC_2	Over current Output, OC protection occurs when current	OFF	OFF	ON	ON

Section VI. Function Parameter Description

		exceeds 1.5~ 3 (G/S: 2; F: 1.5; Z/M/T: 2.5; H: 3)times of motor's rated current				
4	OU	Over voltage	OFF	ON	OFF	OFF
5	OL	Over load	OFF	ON	OFF	ON
6	PH_O	Phase-loss	OFF	ON	ON	OFF
7	OH	Over heat	OFF	ON	ON	ON
8	LU	Under voltage	ON	OFF	OFF	OFF
9	UL	Under load	ON	OFF	OFF	ON
10	EEPr	EEPROM error	ON	OFF	ON	OFF
11	OC_P	System is disturbed or impacted by instant over current	ON	OFF	ON	ON
12	E_FL	External fault	ON	ON	OFF	OFF
13	PG	PG error	ON	ON	OFF	ON
14	PID	PID regulation fault	ON	ON	ON	OFF
15	DATE	Time limit fault	ON	ON	ON	ON

When $013 \sim 016=32$, SPA, SPB, SPC, SPD output frequency (intergrate pole open, work period=50\%) signal. Output pulse/second=output frequency $\times 012$.
DFM multiple setting should satisfy:
Max output frequency $\times 012<5000 \mathrm{~Hz}$

019: Minimum input frequency 020: Maximum input frequency

factory setting: $0.00 / 0.0 \mathrm{~Hz}$ factory setting: $50.00 / 500.0 \mathrm{~Hz}$

Define the connection of analog input and frequency, 019 is anolog V2, 12 sets the frequency to minimum voltage/current; o20 is V2, 12 sets the frequency to maximum voltage/current, the connection is effective when F04 is 1,2 , and 3 .
If o19<o20, it is positive input, if $019>020$, it is negative input.
If V 2 inputs $1 \sim 5 \mathrm{~V}$ voltage, $0.00 \sim 50.00 \mathrm{~Hz}$, parameters are set as below:
$\mathrm{O} 01=1 \mathrm{~V}, 002=5 \mathrm{~V}, \mathrm{O} 19=0.00 \mathrm{~Hz}, 020=50.00 \mathrm{~Hz}$.
If V2 inputs $4 \sim 20 \mathrm{~mA}$ current, $45.00 \sim 30.00 \mathrm{~Hz}$, the parameters are set as below: $\mathrm{O} 04=4 \mathrm{~mA}, \circ 05=20 \mathrm{Ma}, 019=45.00 \mathrm{~Hz}, o 20=30.00 \mathrm{~Hz}$

Note: 015, 016, 018 are invalid for PI7100 family inverter, 7.5KW and below; for PI7600 family inverter, 4KW and below.

6-2-4. F70 Current loop parameters [CUR]

C00: detect filter time
 factory setting: 10ms

The detect filter time. The value is too great, the control is stable but response is slow; the value is too little, the system response is rapid but perhaps is unstable. So it is necessary to consider the stability and the response speed at the same time when setting the value.

C01: re. filter time factory setting: $\mathbf{1 0 m s}$

The filter time to reference value. If the value is too great, the control is stable but response is slow; if the value is too little, the system response is rapid but perhaps is unstable.

C02: Integral time of current-loop
 factory setting: $\mathbf{5 0 0} \mathrm{ms}$

It defines the integral time of the current-loop. If the integral time is too great, response is slow and the control of external disturbing signal become bad; if the time is too little, response is rapid, but perhaps brings the surge.

C03: proportion gain of current-loop factory setting: 100\%

It defines the proportion gain. If the gain is great, the response is rapid, but too great, surge perhaps occur; if the gain is too little, response is slow.

C04: upper torque

factory setting: 80.0\%
The parameter is a ratio, that is user could set the maximum setting torque.
C05: excitation setting value
factory setting: 60.0\%
The parameter is a ratio, namely the setting excitation value of the motor/the rated excitation value of the motor.

6-2-5. speed-loop parameter [SPD]

d00: filter time of speed-loop

factory setting: 10 ms

It defines the filter time of the speed-loop. The range is $2 \sim 200 \mathrm{~ms}$. If the value is too great, the control is stable but response is slow; if the value is too little, the system response is rapid but perhaps is unstable. So it is necessary to consider the stability and the response speed at the same time when setting the value.
d01: integral time of speed-loop factory setting: 0.25s
It defines the integral time of the speed-loop. The range is $0.01 \sim 100.00 \mathrm{~s}$. If the integral time is too great, response is slow and the control of external disturbing

Section VI. Function Parameter Description
signal become bad; if the time is too little, response is rapid, but perhaps brings the surge.

d02: differential time of speed-loop factory setting: $\mathbf{0 . 0 0 0 s}$

It defines the differential time of the speed-loop and the range is $0.000 \sim 1.000 \mathrm{~s}$. If the time is great enough, the surge which is caused by P action when difference occurring can attenuate quickly. But too great, the surge will happen contrary. When the time is little, the attenuation function is little too.
d03: proportion gain of speed-loop factory setting: 100\%
It defines the proportion gain. And the range is $0 \sim 1000 \%$.If the gain is great, the response is rapid, but too great, surge perhaps occurs; if the gain is too little, response is slower.

6-2-6. F72 PID parameter [PID]

P00: PID regulate mode

factory setting: 10

The tens digit for P00 select PID feedback signal abnormity treatment:
1: Warning Continuous running: continue ruuning after abnormity feedback signal.
2: Warning Decelerating stop: decelerate and stop after abnormity feedback signal.
3: Warning Free stop: free stop after abnormity feedback signal .
PID regulate mode:
When the inverter receives start command, it can control output frequency automatically in the PID regulation mode after comparing the setting signal and feedback signal from terminal. The process is explained as following:

0 : negative action, when Δ is positive, frequency rises and when Δ is negative, frequency falls
1: positive action, when Δ is positive, frequency falls and when Δ is negative, frequency rises.

P01: Output frequency limit
 factory setting: 100\%

The parameter defines the range of the output when using PID control.

P02: feedback signal selection

factory setting: 2

It selects the feedback signal when using PID control.
0 : external terminal IF, the range is $0 \sim 20 \mathrm{~mA}$, the filter time of feedback signal is decided by 003.
1: external terminal IF, the range is $4 \sim 20 \mathrm{~mA}$, the filter time of feedback signal is decided by 003.
2: external terminal VF, the range is $0 \sim 10 \mathrm{~V}$, the filter time of feedback signal is decided by 000.
3: external terminal $V F$, the range is $1 \sim 5 \mathrm{~V}$, the filter time of feedback signal is decided by 000.

P03: setting signal selection

factory setting: 3

It selects the getting signal when using PID control.
0 : external terminal 12 , the range is $0 \sim 20 \mathrm{~mA}$
1: external terminal I2, the range is $4 \sim 20 \mathrm{~mA}$
2: external terminal V 2 , the range is $0 \sim 10 \mathrm{~V}$
3: the getting signal is from keyboard input
4: the getting signal is from RS485 input
5: the getting signal is from keyboard potentionmeter

P04: Key set signal factory setting: 50.0\%

When P03 is 3 , the getting pressure set by the keyboard. $0.0 \sim 100.0 \%$ is 0 to the maximum pressure respectively.

P05: PID integral time
 factory setting: 0.25s

0.01~100.00s

The parameter determines the integral regulation speed, the regulation acts on the difference between PID feedback and getting value by PID regulator.
When the difference between PID feedback and getting value is 100%, integral regulator continues to regulate output to($\mathrm{P} 01 \times \mathrm{F} 13 \times 12.5 \%$) Hz during the PID integral time.(single direction PID regulation, ignores proportion and differential effect).
If the value is great, the control is stable but response is slow; if the value is little, the system response is rapid but perhaps surge occurs.

P06: PID differential time

factory setting: $\mathbf{0 . 0 0 0} \mathrm{s}$
0.000~1.000s

The parameter determines the regulation intensity, the regulation acts on the change ratio of the difference between PID feedback and getting value by PID regulator.
When the change ratio of the difference between PID feedback and getting value is 100% in the differential time, PID regulator regulates output to(P01×F13×12.5\%) Hz (single direction PID regulation, ignores proportion and integral effect).
If the value is great, the intensity is great, but system surge is easily to occur.

P07: PID proportion gain

factory setting: 100\%
0~1000\%
The parameter difines regulation intensity of PID regulator, the more the parameter is, the more the intensity is.
When proportion gain is 100%, and the difference between PID feedback and getting value is 100%, PID regulator's output is($\mathrm{P} 01 \times \mathrm{F} 13 \times 12.5 \%) \mathrm{Hz}$ (single

Section VI. Function Parameter Description
direction PID regulation, ignores differential and integral effect).
Proportion gain is the parameter decides PID regulator's response extent.
If the gain is great, the response is rapid, but if too great, the surge will occur; the gain is little, the response will lag.

P08: Fault detect time

factory setting: 300.0s
$0.1 ~ 3200.0$
The parameter defines the longest time that PID can have a continuous integral. IF exceed the time, we consider it is a PID regulation fault.

6-2-7. F73 System parameter [SYS]

y00: restore factory setting

factory setting: 0

0 : not restore

1 : restore
When the parameter is valid, all the parameters will restore the setting value before factory.
Those parameters which have no factory value will reserve the setting value.

y01: Fault record 1

y02: Fault record 2
y03: Fault record 3
y04: Fault record 4

y05: Fault record 5

These parameters register fault which happen in the last several times, and can inquire about the value of monitor object at the time of fault by 'PRG' and "plus or minutes" key.
The monitor object of fault state:
0 : fault style
The fault code is expressed as following:

Serial number	LED display	Fault message
0	OC_C	Over current signal from current inspected circuit
1	OCFA	Over current signal from drive circuit.
2	OC_2	Output over current, OC protection when current exceeds motor's 1.5~3 times of rated current (G/S:2; F:1.5; Z/M/T:2.5; H:3)
3	OU	Over voltage

Section VI. Function Parameter Description

4	OL	over load
5	PH_O	phase-loss
6	OH	over heat
7	LU	under voltage
8	UL	under load
9	EEPr	EEPROM error
10	OC_P	System is disturbed or impacted by instant over current
11	E_FL	external fault
12	PG	PG error
13	PID	PID regulation fault
14	DATE	Time limit fault

1: output frequency at the time of fault
The output frequency of the inverter at the time of fault
2: output current at the time of fault
The actual output current at the time of fault
3: output voltage at the time of fault
The actual output voltage at the time of fault
4: running state at the time of fault
The running state at the time of fault
LED display expresses the running state, and explains as following:

The first bit of LED		The second bit of LED		The third bit of LED	The fourth bit of LED	
F	forward command	F	forward state	compartmentation code	A	accelerate
R	reverse command	R	forward state		D	decelerate
S	stop command	S	stop state		E	running in a even speed
					S	stop state

y06: fault record reset

factory setting: 0
0: no action, the fault records retains
1: the fault records resets

y07: rated output current

The rated output current of the inverter.

y08: rated input voltage

The rated input voltage of the inverter. It would be set as per inverter input voltage level before leaving factory.
y09: product series (only can be inquired)

family code		
series number	input voltage level	
70: 7800 serial	0: Flow load (F)	1: single phase 220V
71: 7600 serial	1: General load (G)	2: three phase 220V
	2: Middle load (M)	3: three phase 380V
	3: Heavy load (H)	4: three phase 460V
	6: TEXDRIVE (S)	5: three phase 575V
	7: WINDLASS (T)	6: three phase 660V
	8: JETDRIVE (Z)	9: three phase 1140 V

y 10 : software version(only can be inquired)

y11: baud rate factory setting: 3
 $\begin{array}{llllll}0: 1200 & 1: 2400 & 2: 4800 & 3: 9600 & 4: 19200 & \text { 5:38400 }\end{array}$
 y12: communication address factory setting: 8

The only serial number distinguishes the one from the others, and can be set as the any value between 1 and 127.

For this function, the host computer should be set with the following parameters: | y12 | Communication add. |
| :--- | :--- | 128

For this function, the slave computer should be set with the following parameters:

F04	Fre. Set mode	V2 proportional linkage adjustment	11
		I2 proportional linkage adjustment	12
F05	Run control mode	proportional linkage control	4
F13	Max. frequency	Max. output frequency of inverter	
F22	Min. running fre.	Min. output frequency of inverter	
y12	Communi. address	$0 \sim 127$	
y11	Baud rate	The same with that of host inverter	
b15	Proportional linkage factor	$0.10 \sim 10.00$	
001	V2 min. input voltage	Adjustment range min. voltage	
o02	V2 max. input voltage	Adjustment range max voltage	
o19	Min. input frequency	0.00	
020	Max. input frequency	Adjustment range	

v Set 128, the inverter is the host inverter among the proportional linkage
There is only one host inverter in one proportional linkage.
$v \quad$ The F04 and F05 parameters of the host inverter can be any settings. The running states of the slave inverters follow the host inverter.
v If the host inverter $\mathrm{F} 04=11 / 12$, setting proportional linkage adjustment, then F63=1 automatically, the frequency of the host inverter controlled by MSS multi-step speed SS1/SS2/SS3.

SS3	SS2	SS1	The host inverter frequency
0	0	0	Potentiometer adjustment
0	0	1	1 step speed + Potentiometer adjustment

Section VI. Function Parameter Description

0	1	0	2 step speed + Potentiometer adjustment
0	1	1	3 step speed + Potentiometer adjustment
1	0	0	4 step speed + Potentiometer adjustment
1	0	1	5 step speed + Potentiometer adjustment
1	1	0	6 step speed + Potentiometer adjustment
1	1	1	7 step speed + Potentiometer adjustment

v The host inverter controls the slave inverter's running state.
v The inverter set frequency=proportional linkage factor \times host inverter frequency + value adjusted by the potentiometer.
v The range of inverter's set frequency: F22 min. running frequency~F13 max. frequency.

E.g. Host inverter set:

F04	Fre. Set mode	V2 proportional linkage adjustment	11
y12	Communi. address	128	
y11	Baud rate	3	
o01	V2 min. input voltage	2 V	
o02	V2 max. input voltage	10 V	
019	Min. input frequency	0.00 Hz	
o20	Max. input frequency	20.00 Hz	

Slave inverter set:

F04	Fre. Set mode	11:V2 proportional linkage adjustment
F05	Run control mode	4
F13	Max. frequency	50.00 Hz
F22	Min. running fre.	0.00 Hz
y12	Communi. address	8
y11	Baud rate	The same with that of the host inverter
b15	Proportional linkage factor	1.00
o01	V2 min. input voltage	2 V
o02	V2 max. input voltage	10 V

019	Min. input frequency	0.00 Hz
o20	Max. input frequency	20.00 Hz

Potentiometer adjustment range 20.00 Hz

2 V	-10 Hz
6 V	0 Hz
10 V	+10 Hz

The proportional linkage wiring:

y13: total running time setting

It sets whether add the using time of the machine every time or not.
\qquad

0: automatically clear after start

1: accumulate the time after start.

y14: total time unit

factory setting: 0

0 : the unit is hour
1: the unit is day

y15: Manufacture Date - year

The parameter only can be inquired.
y16: Manufacture Date - month - day factory setting: leaving factory date
The parameter only can be inquired.

y17: decode input

In the state of locked parameter, LED displays the times of error input. There are three times input limit, if input is wrong in continuous three times, the systems will prohibit input of the password. It can prevent testing password in an illegal way, and need restart the machine to input again.
Once the input is right in any time during three times input limit, the parameter is unlocked.

y18: password input

The parameter sets the password, and the range is 0~9999. After setting the password, parameter locks and keyboard displays "code"; if the password is unlocked or password input is right, the keyboard will display "deco".

6-2-8. F74 motor parameter [MOT]

b00: motor poles

factory setting: 2

It is the half of the magnet poles of the motor.

b01: motor rated current factory setting: (y07) A

The rated current can be set, but can't be more than the rated current of the inverter. The parameter confirms the OL protection capability of the motor and energy-saving running.
To prevent self-cooled motor form overheat when running in a low speed, and the motor capacity change when motor character change little, the user can correct the parameter to protect the motor.
The factory value is decided by power and default value is y07.

b02: motor rated voltage

The voltage in the rated state. If the rated voltage is lower than the voltage of the supply power, it is necessary to check the insulated intension.

b03: motor rated speed
 factory setting: 1500rpm

The speed when motor works in the rated power.

b04: motor rated frequency factory setting: $50.00 / 500.0 \mathrm{~Hz}$

Motor's output frequency under rated state.
b00~b04 are the motor's nameplate parameters which touch the precision. Set the parameters according to the motor's nameplate.
Excellent vector control performance requires exact motor parameters. Exact parameters are base on the correct setting of motor's rated parameters.
To assure the control performance, please match the right motor as per the

Section VI. Function Parameter Description
inverter's standard, motor rated currentis limited between 30\%~120\% of inverter rated current.

b05: motor un-load current factory setting: (y07×40\%)A

The un-load current, and affects the degree of the slip compensation directly.
The factory value is decided by power and default value is $\mathrm{y} 07 \times 40 \%$.

b06: stator resistor

factory setting: $\mathbf{0 . 0 0 0} \mathrm{ohm}$
The stator resistor, when b13 is 1 ,the system scales automatically.
b07: rotor resistor factory setting: 0.000ohm
The rotor resistor, when b13 is 1 , the system scales automatically.

b08: leakage inductance factory setting: 0.0 mH

The leakage inductance of motor's coil winding, when $\mathrm{b} 13=1$, system measures automatically.
b09: mutual inductance factory setting: 0.0 mH
The mutual inductance of motor's coil winding, when $\mathrm{b} 13=1$, system measures automatically.
b05~b09 is the motor's basic electric parameters, these parameters is essential to achieve vector control calculation
When b01 is set, b05~b09 would automatically reset to the defaulted standard Y series 4 poles asynchronism motor's parameters. Inverter could get the motor parameters without automatic parameters setting.
If the inverter could not meet with the requirement, use b13 motor parameters setting to get the exact motor parameter. If the right motor parameters are available, it could be input manually.
b10: PG pulse
factory setting: 2048

The number of using PG pulses, setting value is the number of pulse when motor run a cycle.
b11: PG cut action

factory setting: 0

Set the stopping methods when detecting PG break-line.
0 : continue running
1: alarm and decelerate to stop
2: alarm and stop freely

The parameter decide the rotation direction of encoder, and the motor forward direction is the reference direction.
0: If phase A is foregoing when motor forward, b12 is set as 0 .
1: If phase B is foregoing when motor forward, b12 is set as 1 . Note: parameter: b10/11/12 are valid with PG. If needing PG board, please connect with our company.

b13: motor parameter measurement

factory setting: 0

The parameter is set to achieve motor's dynamic measurement of parameters. Please disconnect the motor and load(run without load).
When $\mathrm{b} 13=1$, inverter start to measure parameters automatically.
When keyboard displays "CAL1": stator resistor measure, motor stops.
When keyboard displays "CAL2":rotor resistor, leakage inductance measure, motor stops.
When keyboard displays "CAL3": mutual inductance measure, motor runs in high speed, pay attention.
The measurement could be stopped by pressing "STOP" key.
Please prepare to run the motor well before setting, the motor will run in a high speed during the measurement .The measurement will end with "CAL3" diapapears.
b1 resets to 0 after measurement. The measured parameters will be stored automatically to b05~b09.

b14: Rotate speed display plus
 factory setting: 100.0\%

Adjust the display of motor's actual running speed, refer to F00 monitor select: 6 Actual motor speed.
b15: Percentage linkage modulus

factory setting: $\mathbf{1 . 0 0}$

The only number which differentiate other inverters.
The set range $1 \sim 127$ is the address of slave inverters that could receive command and send the state of such slave inverters.
F73=128, the inverter is set to be one host inverter in the percentage linkage. There is only one host inverter in one percent application.
Set frequency of slave inverter=percentage linkage modulus X frequency of host inverter
The running state of slave inverter is controlled by host inverter

b16: Reserved
 b17: Reserved

Section VII. Fault Diagnosis and Solutions

Problems	Possible causes	Solutions
Keyboard can not control	Control mode setting is wrong	Check F05.
	Frequency setting is wrong	Check F04.
Potentiom eter can't regulate speed	Control mode setting is wrong	Check F05.
	Frequency setting is wrong	Check F04.
The motor does not rotate	LED monitor indicates error message	
	No voltage exists between terminals P and N .	Check the voltage at R , S or T and charging circuit.
	U, V or W terminals produce no output or abnormal output.	Check the control mode and frequency parameter. Check the terminal condition if it is operated by an external terminal.
	Re-start after powering down or free run	Remember the set operating state.
	Too much load on the motor	Check and lower the load.
Over current OC	fault display OC-P	System is disturbed or instant over current
	fault display OC-C	OC signal from current self-inspected citcuit impact
	fault display OC-FA	OC signal from drive circuit
	fault display OC-2	Output over current and current exceed 1.5~3 times of motor's rated current (G/S: 2; F: 1.5; Z/M/T: 2.5;H:3).
	Over current during acceleration	Reset or modify the parameters of the functions F09, F18, F19.
	Over current during deceleration	Reset or modify the parameters of the functions F10, F20, F21.
	Over current during operation	Check the load change and eliminate it.
	Over current during starting or operation from time to time	Check if there is slight short circuit or grounding.
	Disturbance	Check the earthing wire, screened cable grounding and terminals.

overload OL	Too much load	Lower the load．or enlarge b01 in the allowable load range or enlarge F46 to raise the protection level．
	Inappropriate parameter is set	Modify the parameters of the functions b01．
Over voltage OU	Power voltage exceeds the limit	Checking voltage is right or not． Frequency inverter rated voltage setting is right or not．
	Too fast deceleration	Modify the parameters of the functions F10．
	The load has too much inertia	Reduce the load inertia，or raise the capacity of frequency converter，or use B type converter or add a braking unit．
Low voltage LU	Too low power voltage	Checking voltage is right or not． Frequency inverter rated voltage setting is right or not．
	The power is off transiently	Add options of capacitor boxes．
	The line has too small capacity or great rush current exists on the lines．	Make renovation on power supply system．
Overheat OH	Too high ambient temperature	Improve ambient conditions，when the fans are valid．
	The carrier frequency is too high	Check the setting value of function F15．

Note：

※ Switch off the power supply，and do not touch the PCBs and any parts inside in five minutes after the charging indicator light（！CHARGE）goes off． Ensure the capacitance has been discharged completely by measuring with the instrument before work inside．Otherwise，there is a danger of electric shock．
※ Do not touch the PCB or IGBT and other internal parts unless actions have been taken to prevent the static electricity．If not，the components may be damaged．

Section VIII．Standard Specifications

8－1．Specification

8－1－1．PI7800 specifications

Inverter type	$\begin{gathered} \text { Light Load } \\ F \end{gathered}$		Standard Load G		Medium Load M		Heavy Load H		Structure item
	$\begin{aligned} & \hline \text { PF } \\ & \mathrm{Kw} \end{aligned}$	$\begin{aligned} & \mathrm{IF} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{PG} \\ & \mathrm{kw} \end{aligned}$	$\begin{gathered} \hline \text { IG } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline \begin{array}{l} \text { Pu } \\ \mathrm{kw} \end{array} \end{aligned}$	$\begin{gathered} \hline \text { In } \\ \text { A } \\ \hline \end{gathered}$	$\begin{aligned} & \text { PH } \\ & \text { Kw } \end{aligned}$	$\begin{aligned} & \hline \mathrm{IH} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	
3 phase voltage 380 V 50／60Hz									
PI7800•・セロ3	11	25	7.5	16	5.5	13	5.5	13	1N2
P17800•・セロ3	15	32	11	25	7.5	16	7.5	16	1N2
P17800••・ロ3	18.5	38	15	32	11	25	11	25	1N2
PI7800••・ロ3	22	45	18.5	38	15	32	11	25	1N3
PI7800••・ロ3	30	60	22	45	18.5	38	15	32	1N3
P17800••・ロ3	37	75	30	60	22	45	18.5	38	2N1
PI7800••・ロ3	45	90	37	75	30	60	22	45	2N1
PI7800••・ロ3	55	110	45	90	37	75	30	60	2N2
PI7800••・ロ3	75	150	55	110	45	90	37	75	2N2
PI7800••・ロ3	93	170	75	150	55	110	45	90	2N2
P17800••・ロ3	110	210	93	170	75	150	55	110	2N3
P17800••・ロ3	132	250	110	210	93	170	75	150	2N3
PI7800••・ロ3	160	300	132	250	110	210	93	170	2N4
PI7800••・ロ3	187	340	160	300	132	250	110	210	2N4
P17801•・セロ3			132	250					3N1
PI7801•・セロ3			160	300					3N1
PI7800••・ロ3	200	380	187	340	160	300	132	250	3N1
PI7800••・ロ3	220	415	200	380	187	340	160	300	3N1
PI7800••・ロ3	250	470	220	415					3N1
PI7800••・ロ3	280	520	250	470	200	380	187	340	3N2
PI7800••・ロ3	315	600	280	520	220	415	200	380	3N2
PI7800••・ロ3	355	640	315	600	250	470	220	415	3N2
PI7800••・ロ3	400	750	355	640	280	520	250	470	3N2

8－1－2．PI7600 specification

Inverter type	$\begin{gathered} \text { Light Load } \\ \text { F } \end{gathered}$		Standard Load G		Medium Load M		Heavy Load H		Structur e item
	$\begin{aligned} & \hline \mathrm{PF} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \hline \mathrm{IF} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{PG} \\ & \mathrm{~kW} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{IG} \\ \mathrm{~A} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Pz} \\ & \mathrm{kw} \end{aligned}$	$\begin{aligned} & \mathrm{Iz} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \mathrm{PH} \\ & \mathrm{~kW} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{IH} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	
1 phase voltage 220V 50／60Hz									
PI7600•・セ $\square 1$	0.75	4	0.4	2.5					4N2B
PI7600•・セ 1	1.5	7	0.75	4	0.4	2.5			4N2B
PI7600••・ロ1			1.5	7	0.75	4	0.4	2.5	4N2B
PI7600••・ロ1	2.2	10	2.2	10	1.5	7	0.75	4	4N3B
PI7600•・セ 1	4	16	4	16	2.2	10	1.5	7	4N3B
PI7600••・ロ1	5.5	20	5.5	20	4	16	2.2	10	4N4B
3phase voltage $220 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$									
PI7600•・セロ2	0.75	4	0.4	2.5					4N2B
PI7600••・ロ2	1.5	7	0.75	4	0.4	2.5			4N2B
PI7600••・ロ2			1.5	7	0.75	4	0.4	2.5	4N2B
PI7600••・ロ2	2.2	10	2.2	10	1.5	7	0.75	4	4N3B
PI7600•・セロ2	4	16	4	16	2.2	10	1.5	7	4N3B
PI7600••・ロ2	5.5	20	5.5	20	4	16	2.2	10	4N4B
3phase voltage $380 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$									
PI7600•・セロ3			0.75	2.5	0.75	2.5	0.75	2.5	4N2B
PI7600•・セ $\square 3$	1.5	3.7	1.5	3.7	1.5	3.7	1.5	3.7	4N2B
PI7600•・セ $\square 3$	2.2	5	2.2	5	2.2	5	2.2	5	4N2B
PI7600••・ロ3	4	8.5	4	8.5	4	8.5	4	8.5	4N3B
PI7600•・セロ3	5.5	13	5.5	13	5.5	13			4N3B
PI7600••・ロ3	7.5	16	7.5	16	7.5	16	5.5	13	4N4B
PI7600•・セ $\square 3$	11	25					7.5	16	4N4B

8－1－3．Table of rated current for different specifications

G／F／H／S／Z／T／M Type						
（V）	$\begin{gathered} \hline 220 \mathrm{~V} \\ 1 \Phi \end{gathered}$	$\begin{gathered} \hline 220 \mathrm{~V} \\ (240 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \hline 380 \mathrm{~V} \\ (415 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & \hline 460 \mathrm{~V} \\ & (440) \end{aligned}$	515V	660 V
（ KW）	（ A）					
0.4	2.5	2.5	\cdot	－	－	．
0.75	4	4	2.5	2.5	1.7	－
1.5	7	7	3.7	3.7	2.5	－
2.2	10	10	5	5	4	\cdot
4	16	16	8.5	8	6.5	5.5
5.5	20	20	13	11	8.5	7.5
7.5	30	30	16	15	10.5	9
11	42	42	25	22	17	15
15	55	55	32	27	22	18
18.5		70	38	34	26	22
22		80	45	40	33	28
30		110	60	55	41	35
37		130	75	65	52	45
45		160	90	80	62	52
55		200	110	100	76	63
75		260	150	130	104	86
93		320	170	147	117	98
110		380	210	180	145	121
132		420	250	216	173	150
160		550	300	259	207	175
187		600	340	300	230	198
200		660	380	328	263	218
220		720	415	358	287	240
250		．	470	400	325	270
280		．	520	449	360	330
315		．	600	516	415	345
375		．	680	600	450	390
400		－	750	650	520	430
500		．	920	800	650	540

8－2．Standard specification

items			specifications
㐫	Voltage and frequency		Single－phase 200～240V，50／60Hz Three－phase 200～240V，50／60Hz Three－phase $380 \sim 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Three－phase $440 \sim 460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Three－phase $575 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Three－phase $660 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Three－phase $1140 \mathrm{~V}, 50 / 60 \mathrm{H}$
		able Fluctuation	voltage：$\pm 15 \%$ frequency：$\pm 5 \%$
흔항	Control system		high performance vector control inverter based on DSP
	Output frequency		$\mathrm{G} / \mathrm{F} / \mathrm{Z} / \mathrm{S} / \mathrm{T} / \mathrm{M}: 0.00 \sim 800.0 \mathrm{~Hz}$ ，the maximum frequency range is $10.00 \sim 800.0 \mathrm{~Hz}$ $\mathrm{H}: 0.00 \sim 2000.0 \mathrm{~Hz}$ ，the maximum frequency range is $10.00 \sim 2000.0 \mathrm{~Hz}$ ．
	control method		V／F control，V／F＋PG control，vector＋PG control
	waveform produce methods		asynchronous space vector PWM，step less and subsection synchronous space vector PWM， 2 phase optimized vector PWM
	Auto torque boost function		Realize low frequency（ 1 Hz ）and large output torque control under the v / f control mode．
	Accelerate／decelerate control		Acceleration／Deceleration S curve subsection set mode．The maximum running time is 26 hours．
	Program running control		7 step speed program running，the maximum running time is 88 hours．
	frequency setting accuracy		Digital references： $0.01 \mathrm{~Hz}(300 \mathrm{~Hz}$ and below）， 0.1 Hz （above 300 Hz ） Analog references： $0.05 \mathrm{~Hz} / 60 \mathrm{~Hz}$
	frequency accuracy		Speed control tolerance $0.01 \%\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$
	V／F curve mode		Linear，square， 8 V／F curve set by user
	Over load capability		G／S：150\％for one minute， 200% for 0.1 second F：120\％for one minute， 150% for 0.1 second Z／M／T：180\％for one minute， 250% for 0.1 second $\mathrm{H}: 250 \%$ for one minute， 300% for 0.1 second
	slip compensation		0～10\％automatic slip compensation
$\begin{aligned} & \text { 을 } \\ & \text { 들 } \end{aligned}$	$\begin{aligned} & \text { 즐 } \\ & \text { 言 } \\ & \text { 言 } \\ & \underline{\underline{S}} \end{aligned}$	running method	Keypad／Terminal／Communication mode
		frequency setting	There are 11 frequency setting modes，including DC $0 \sim 10 \mathrm{~V}$ ， DC 0～20mA，DC 4～20mA，potentiometer on the keyboard．
		start signal	forward，reverse
		Multi－segment speed	can set 7 steps speed at most（using multi－function or program running）
		Multi－segment acceleration	At most 8 steps acceleration can be set（using multi function terminals or program running．）
		instant stop	Interrupt controller＇s output．
		traverse running	Program control running
		jog	running in low speed
		fault reset	When the protection function is affective，system can reset fault state automatically．
		PID feedback signal	DC 0～10V，DC 1～5V，DC 0～20mA，DC 4～20mA

8-3 Sharp size

8-3-1. PI7800 family (3phase voltage 380V~415V, $50 / 60 \mathrm{~Hz}$)

1. 1N2~1N3, 2N1~2N4

Type	(kW)	$\begin{gathered} \text { Structure } \\ \text { item } \end{gathered}$	Shape			Installation dimension			Net	Gross	
			L	W	H	a	b	d	$\begin{gathered} \text { Weight } \\ \hline \mathrm{kg} \end{gathered}$	$\begin{gathered} \text { weight } \\ \hline \mathrm{kg} \end{gathered}$	Keypad
F	11~18.5	1N2	$\left.\begin{gathered} 36 \\ 0 \end{gathered} \right\rvert\,$	235	207	340	150	$\varnothing 10$	10	11	JP6E7000
G	7.5~15										
M	5.5~11										

2) 1 N 3

Type	(kW)	Structure item	Shape			Installation dimension			$\begin{gathered} \text { Net } \\ \text { Weight } \\ \text { kg } \end{gathered}$	Gross kg	Keypad
			L	w	H	a	b	d			
F	22~30	1N3	$\left.\begin{gathered} 41 \\ 0 \end{gathered} \right\rvert\,$	264	242	390	165	$\varnothing 10$	14	15.5	JP6E7000
G	18.5~22										
M	15~18.5										
H	11~15										

3) 2 N 1

Type	(kW)	Structure item	Shape			Installation dimension			$\begin{gathered} \text { Net } \\ \text { Weight } \\ \text { kg } \end{gathered}$	$\begin{gathered} \text { Gross } \\ \text { weight } \\ \text { kg } \end{gathered}$	Keypad
			L	w	H	a	b	d			
F	37~45	2N1	560	300	243	540	200	$\varnothing 10$	22	23.5	JP6E7000
G	30~37										
M	22~30										
H	18.5~22										

4) 2 N 2											
Type	(kW)	Structure item	Shape			Installation dimension			$\begin{gathered} \text { Net } \\ \text { Weight } \\ \text { kg } \end{gathered}$	Gross weight kg	Keypad
			L	W	H	a	b	d			
F	55~93	2N2	660	365	293	640	250	$\varnothing 10$	40	48	JP6E7000
G	45~75										
M	37~55										
H	30~45										
5) 2N3											
Type	(kW)	Structure item	Shape			Installation dimension			$\begin{gathered} \text { Net } \\ \text { Weight } \\ \text { kg } \end{gathered}$	Gross weight kg	Keypad
			L	W	H	a	b	d			
F	110~132	2N3	710	455	293	690	350	$\varnothing 10$	57	68	JP6E7000
G	93~110										
M	75~93										
H	55~75										

6) 2 N 4											
Type	(kW)	Structureitem	Shape			Installation dimension			$\begin{gathered} \text { Net } \\ \text { Weight } \\ \text { kg } \end{gathered}$	$\begin{gathered} \hline \text { Gross } \\ \text { weight } \\ \mathrm{kg} \end{gathered}$	Keypad
			L	W	H	a	b	d			
F	160~187	2 N 4	910	480	342	890	350	$\varnothing 10$	72	86	JP6E7000
G	132~160										
M	$\xrightarrow{110 \sim 132}$										

Type	(kW)	Structure item	Shape			Installation dimension			$\begin{gathered} \text { Net } \\ \text { Weight } \\ \text { kg } \end{gathered}$	Gross weight kg	Keypad
			L	w	H	a	b	d			
F	200~250	3 N 1	1540	515	443	465	367	$\varnothing 13$	160	190	JP6E7000
G	187~220										
M	$\xrightarrow{160 \sim 1877}$ 132~160										

3. 3N2

Type	(kW)	$\begin{array}{\|c} \text { Structure } \\ \text { item } \end{array}$	Shape			Installation dimension			NetWeight	Gross weigh	Keypad
			L	W	H	a	b	d			
F	280~400	3 N 2	1700	850	492	640	260	Ø13	280	350	JP6E7000
G	250~355										
M	200~280										

8-3-2 PI7600

1. 4N2B-4N4B

1) 4 N 2 B

Voltage	Type	(kW)	Structure item	Shape			Installation Dimension			Net weight kg	Net weight kg	Keypad
				L	W	H	a	b	d			
$\left.\begin{array}{\|c} 1 \text { phase } \\ 220 \mathrm{v} \end{array} \right\rvert\,$	F	0.75~1.5	4N2B	170	125	162	160	112	$\varnothing 5$	2	2.4	JP5E7000
	G	$0.4 \sim 1.5$										
	M	0.4~0.75										
	H	0.4										
$\left.\begin{array}{\|c} 3 p h a s e \\ 220 \mathrm{v} \end{array} \right\rvert\,$	F	0.75~1.5	4N2B	170	125	162	160	112	$\varnothing 5$	2	2.4	JP5E7000
	G	0.4~1.5										
	M	0.4~0.75										
	H	0.4										
$\left.\begin{array}{\|c\|} \hline 3 \mathrm{Bhase} \\ 380 \mathrm{v} \end{array} \right\rvert\,$	F	1.5~2.2	4N2B	170	125	162	160	112	$\varnothing 5$	2	2.4	JP5E7000
	G	0.75~2.2										
	M	0.75~2.2										
	H	0.75~2.2										

2) 4 N	3B											
Voltage	Type	(kW)	Structure item	Shape			Installation Dimension			Net weight kg	$\begin{array}{\|c\|} \hline \text { Net } \\ \text { weight } \\ \text { kg } \end{array}$	Keypad
				L	W	H	a	b	d			
	F	2.2~4										
1 phase	G	2.2~4		220	150	178	205	138	ه5 5		35	P5E7000
	M	1.5~2.2	4N3B	220			205			3	3.5	JP5E7000
	H	0.75~1.5										
	F	2.2~4										
3 phase	G	2.2~4	4N3B	220	150	178	205	138	ه5.5	3	35	JP5E7000
220v	M	1.5~2.2				178	205	138	¢5.5	3	3.5	JPSE7000
	H	0.75~1.5										
	F	4~5.5										
3phase	G	4~5.5	4N3B	220	150	178	205	138	ه5.5	3	35	JP5E7000
380 v	M	4~5.5				178	205	138	¢5.5	3	3.5	JPSE7000
	H	4										

3) 4N4B												
Voltage	Type	(kW)	Structure item	Shape			Installation Dimension			$\begin{array}{\|c\|} \hline \text { Net } \\ \text { weight } \\ \text { kg } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \begin{array}{c} \text { Net } \\ \text { weight } \\ \mathrm{kg} \end{array} \\ \hline \end{array}$	Keypad
				L	W	H	a	b	d			
$\left.\begin{array}{\|c\|} \hline 1 \text { phase } \\ 220 \mathrm{v} \end{array} \right\rvert\,$	F	5.5	4N4B	300	218	212	288	203	$\varnothing 6.5$	6	7	JP6E7000
	G	5.5										
	M	4										
	H	2.2										
3phase 220 v	F	5.5	4N4B	300	218	212	288	203	$\varnothing 6.5$	6	7	JP6E7000
	G	5.5										
	M	4										
	H	2.2										
3phase 380v	F	7.5~11	4N4B	300	218	212	288	203	$\varnothing 6.5$	6	7	JP6E7000
	G	7.5										
	M	7.5										
	H	5.5~7.5										

8-3-3. Keyboard size

JP6E7000/JP6C7000 Keyboard size

Fixed on the panel, hole's dimension: $(131 \pm 0.1) \times(70.8 \pm 0.1)$

JP3E7000 Keyboard size

JP5E7000 Keyboard size

Small keyboard box JP5D7000 dimension:

Fixed on the panel,hoel's dimension: $(94.5 \pm 0.1) \times(61.3 \pm 0.1)$

Section IX. Maintenance

9-1 Inspection and Maintenance

Under normal working conditions,in addition to daily inspection, the frequency converter should be subject to regular inspection (for example inspection for overhaul or as specified but at an interval of six months at most). Please refer to the following table in order to prevent faults.

Check time		Check point	Check item	Check to be done	Method	Criterion
D	R					
$\sqrt{ }$		Display	LED and LCD display	If there is any abnormal display	Visual check	As per use state
\checkmark	\checkmark	Cooling system	Fan	If abnormal noise or vibration is produced.	Visual and audible check	No abnormal sound or vibration
\checkmark		Body	Surrounding conditions	Temperature, humidity, dust content, harmful gas, etc.	Check visually, by smelling and feeling	As per Section $2-1$
\checkmark		Input/ output terminal	Voltage	If input, output voltage is abnormal	Measure at $\mathrm{R}, \mathrm{S}, \mathrm{T}$ and U, V, W terminals	As per standard specifications
	\checkmark	Main circuit	Overall conditions	If the fastenings come loose, if any signs show overheat, discharging, or too high dust content, or the air piping is blocked	Check visually, tighten the fastenings, and clean the related parts	No abnormal conditions
			Electrolytic capacitance	If there is abnormal appearance	Check visually	No abnormal condition
			Current-conducting leads or blocks	If the parts come loose	Check visually	No abnormal condition
			Terminals	If the screws or bolts come loose	Tighten the loose screws or bolts	No abnormal condition

"D" means daily check and " R " means regularly check.
" $\sqrt{ }$ " means need daily check or regularly check
For inspection, do not disassemble or shake the parts without reason, and still less pull off the plug-in-parts at random. Otherwise, the unit will not operate normally, or can not enter the mode of fault display, or causes faults of components or even parts of the main switch components IGBT module is damaged.

If measuring is necessary, the user should note that much different results will be gained possibly if the measuring is performed with different instruments. It is recommended that the input voltage be measured with pointer-type voltmeter, output voltage with rectification voltmeter, input and output current with tong-test ammeter, and power with electrically-driven wattmeter.

9-2. Periodically-Replaced Parts

In order to ensure the operation reliability of the frequency converter, in addition to regular maintenance and inspection, all the parts suffering long-term mechanical wear should be replaced at a regular interval, which includes all cooling fans and the filtering capacitors of main circuits for energy buffer and interchange and PCBs. For continuous use under normal conditions, these parts can be replaced according to the following table and the operating environment, loads and the current state of frequency converter.

Part name	Interval for replacement
Cooling fan	$1 \sim 3$ years
Filtering capacitor	$4 \sim 5$ years
PCB (printed circuit board)	$5 \sim 8$ years

9-3. Storage

The following actions must be taken if the frequency converter is not put into use immediately after delivery to the user and need to keep well for the time being or stored for a long time:
※ Stored in a dry and adequately-ventilated place without dust and metal powder at the temperature specified in the specifications.
※ If the frequency converter is not put into use after one year, a charge test should be made, so as to resume the performance of the filtering capacitor of main circuit in it. For charging, a voltage regulator should be used to slowly increase the input voltage of the frequency converter until it reaches the rating, and the charge should last more than 1~2 hours. This test should be made at least once a year.
※ Don't perform breakdown test at random, for this test will cause shorter life of the frequency converter. The insulation test must be performed after the insulation resistance is measured with a 500 -volt megaohm and this value must not be less than $4 \mathrm{M} \Omega$.

9-4. Measuring and Judgment

※ If the current is measured with the general instrument, imbalance will exists for the current at the input terminal. Generally, differing by not more than 10% is normal. If it differs by 30%, inform the factory to replace the rectification bridge, or check if the error of three-phase input voltage is above 5 V .
※ If the three-phase output voltage is measured with a general multi-meter, the reading is not accurate due to the interference of carrier frequency and only for reference.

Section X. Options

The series can acquire the peripheral equipment by user because of the different using condition and requirement. See the wiring diagram as below:

10-1. MCCB OR ELCB

As power switch of the inverter, MCCB or ELCB can protect supply power, but can't control inverter to run or stop.

10-2. AC reactance

AC reactance is able to restrain the high harmonic wave of converter input current and improve converter's power factor obviously. It's recommended that

AC reactance will be used in the following condition:
※ The capacity of power source is ten times more than the capacity of converter.
※ SCR load or power factor compensated device with ON/OFF is connected with the same power supply.
※ Unbalanced 3-phase voltage is bigger (more than 3\%).
The common size of AC input reactance:

Sharp size:

Inverter standard		Size (mm)						Gross Weight (kg)
Voltage	Capacity (kW)	A	B	C	D	E	F	
$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \end{aligned}$	0.75	155	125	95	7	89	60	3.0
	1.5	155	125	95	7	89	60	3.0
	2.2	155	125	95	7	89	60	3.0
	4	155	125	95	7	89	60	3.5
	5.5	155	125	100	7	89	60	3.5
	7.5	155	125	112	7	89	70	4.0
	11	155	125	112	7	89	70	6.0
	15	180	140	112	8	90	80	8.0
	18.5	180	140	112	8	90	90	8.0
	22	180	140	112	8	90	90	8.0
	30	230	175	122	10	160	90	12.0
	37	230	175	132	10	160	100	15.0
	45	230	175	150	10	160	110	23.0
	55	230	175	160	10	160	120	23.0
	75	285	220	230	14	180	130	30.0

Section X. Options

$\begin{aligned} & 380 \mathrm{~V} \\ & 460 \mathrm{~V} \end{aligned}$	0.75	155	125	95	7	89	60	3.0
	1.5	155	125	95	7	89	60	3.0
	2.2	155	125	95	7	89	60	3.0
	4	155	125	95	7	89	60	3.5
	5.5	155	125	100	7	89	60	3.5
	7.5	155	125	112	7	89	70	4.0
	11	155	125	112	7	89	70	6.0
	15	180	140	112	8	90	80	8.0
	18.5	180	140	112	8	90	90	8.0
	22	180	140	112	8	90	90	8.0
	30	230	175	122	10	160	90	12.0
	37	230	175	132	10	160	100	15.0
	45	230	175	150	10	160	110	23.0
	55	230	175	160	10	160	120	23.0
	75	285	220	230	14	180	130	30.0
	110	285	250	230	14	210	140	33.0
	160	360	260	230	14	210	140	40.0
	200	360	270	230	14	210	140	45.0
	250	400	330	240	14	240	140	55.0
	315	400	350	285	14	270	160	90.0

10-3. \quad Noise filter

The filter is used to restrain the conduction of electrical magnetic wave interference noise produced by the converter or shock the interferential form radio or momentary concussion. The common size of 3-phase EMI noise filter is shown as following: confirm the power supply is 3-phase three lines or 3-phase four lines or single phase. Earthling wire is as short as possible, try to place the filter near the converter.

Please choose EMI filter when the converter is used in residential area, commercial area, science area or other. Please need to prevent magnetic interference, or need meet CE, UL, and CSA standard.
Note: If needing the filter, please connect with our company.

10-4. Connector

It can cut off the supply power in action of the system protection function, to prohibit fault enlarging. But can't control the motor start or stop by connector.

10-5. Braking Unit \& braking resistor

There is braking unit inside when using " B " type frequency converter, the maximum braking torque is 50%. Please choose braking resistor according to the following table:

Section X. Options

Type	Converter power (kW)	Braking resistor (Ω)	Braking resistor Power (W)
220V	0.75	200	120
	1.5	100	300
	2.2	70	300
	4	40	500
	5.5	30	500
	7.5	20	780
	11	13.6	2000
	15	10	3000
	18	8	4000
	22	6.8	4500
380V	0.75	750	120
	1.5	400	300
	2.2	250	300
	4	150	500
	5.5	100	500
	7.5	75	780
	11	50	1000
	15	40	1500

Please choose POWTRAN BRAKING UNIT if you need more braking torque. Please refer to the catalog of braking unit.
There is no braking unit inside the large capacity frequency converter. Please choose POWTRAN BRAKING UNIT if you need braking.

10-6. output EMI filter

The fittings can restrain the disturbance noise and lead leak current produced in the output side.

10-7. AC output reacto

When the line from inverter to motor is longer than 20 meters, it can restrain the over-current caused by the distributing current and the wireless disturbance of the inverter.

Appendix 1. PI7000 RS485 communication protocol

1. Use introduce

This chapter introduces something about the install and handle of RS485 communication between inverter and PLC, PC, factory computer.

RS485 standard interface

I can communicate with all computer
I using multi-drop link system, can link more to 127 inverters
I completely isolated, and noise shield
I The user would use all types of RS232-485 inverter, if only the inverter had "automatic RTS control" function inside.

2. Specification

Communication function:

Items	Specification Communication baud rate Interface methods System codeAsynchronism communication methods, semiduplex
Data formula	ASCII (8 bit)
Slave address	$1 \sim 127$

3. Setup

Communication connection

I Link RS485 communication cables to inverter control terminals (SG+), (SG-).
I when using RS232-485 transform, connect Inverter "SG+" to RS485 "T+", Inverter "SG-" to RS485 "T-"
I After Confirming connection again, turn on inverter power.
I If connection is right, set communication parameters as following: y11 baud rate: $0: 1200,1: 2400,2: 4800,3: 9600,4: 19200,5: 38400 ;$ y12 current inverter communication address 1~127 (If there are more than 1 inverters, don't use the same number);
When using RS485 running control methods, set F05=0/1/2(Keypad + RS485/CAN)

System config

I The number of inverter can be connected is no more than 127.
I Though the length of communication cable can add up to 1300 m , considering the stability, the length limit within 800 m .
I All the control signal cable use the shielded cable, and link to the terminal "SH".
4. Communication protocol

Communication structure is that the inverters use as slave and computer uses as host.
Base format

Host command frame format						
Frame header	Slave address	Host command	Command index	Setting data	Check sum	Frame trail
1 byte	2 bytes	2 bytes	4 bytes	4 bytes	2 bytes	1 byte
Frame header	Slave address	Slave responsion	Command index	responsion data	Check sum	Frame trail
1 byte	2 bytes	2 bytes	4 bytes	4 bytes	2 bytes	1 byte

Explain:

Setting data and responsion data may not exist in some frame.

1: Frame header

7EH="~".
2: Slave address
Slave address can be set by y12. A network has an only marked address, and the range is $1 \sim 127$.
$00 \mathrm{H}=0$ means the broadcast communication address.
When sending, takes apart the slave address to higher 4 bits and lower 4 bits, and converts to ASCII code, then sends higher 4 bits firstly.
For example: If the slave address is 08 H , the system sends " 0 " $=30 \mathrm{H}$, then sends " 8 " $=38 \mathrm{H}$ 。

3: Host command/slave responsion

The host sends the command, and the slave respond to the command.
When sending, takes apart the slave address to higher 4 bits and lower 4 bit, and converts to ASCII code, then sends higher 4 bits firstly.
For example: If the slave address is 03 H , the system sends " 0 " $=30 \mathrm{H}$, then

sends " 3 " $=33 \mathrm{H}$ 。

I Command code function class:

$00 \mathrm{H}=$ control the slave running
$01 \mathrm{H}=$ read function parameter of the slave
$02 \mathrm{H}=$ set function parameter of the slave
$03 \mathrm{H}=$ read the fault history record
$04 \mathrm{H}=$ read the state of the slave
$05 \mathrm{H}=$ set the function parameter of the slave and EEPROM
I Responsion code function class:
$00 \mathrm{H}=$ the control of the slave's running is normal
$01 \mathrm{H}=$ the read of the slave's function parameter is normal
$02 \mathrm{H}=$ the setting of the slave's function parameter is normal
$03 \mathrm{H}=$ the read of fault history record is normal
$04 \mathrm{H}=$ the read of the slave's state is normal
$05 \mathrm{H}=$ the setting of the slave's function parameter and EEPROM is normal $11 \mathrm{H}=$ the frame check is wrong
$12 \mathrm{H}=$ the controller's right is limited
$13 \mathrm{H}=$ the setting number exceeds the limit
$14 \mathrm{H}=$ the number of command is of no effect
$15 \mathrm{H}=$ the number of command index is of no effect
$16 \mathrm{H}=$ the operation is useless, and the setting is of no effect in the state
$17 \mathrm{H}=$ the fault history record is empty

4: Command index and data meaning

Data meaning:

For the host command, command index and setting data are made of double bytes.
When sending, takes apart the command index and setting data to higher 4 bits and lower 4 bit, and converts to ASCII code, then sends higher 4 bits firstly. For example:
If the double byte of the command index is 010 AH , then the data is sent in the following order' 0 ' $=30 \mathrm{H}, ~ ' 1$ ' $=31 \mathrm{H}, ~ ' ~ 0 '=30 \mathrm{H}, ~ ' A '=41 \mathrm{H}$
If the double byte of the setting data is 01 F 4 H , then the data is sent in the following order: ' 0 ' $=30 \mathrm{H}, ' 1$ ' $=31 \mathrm{H}, ~ ' F '=46 \mathrm{H}, ~ ' 4$ ' $=34 \mathrm{H}$

The data format of the host commands:

$\begin{aligned} & \text { Command } \\ & \text { code } \end{aligned}$	The higher byte of command index	The lower byte of command index		The double bytes of setting data
00H (Control the slave running)	OOH	Running command	data	empty
		FWD	00H	
		REV	01H	
		STOP/RESET	02H	
		JOG	03H	
		FORCE STOP	04H	

Appendix 1. PI7000 RS485 communication protocol

01H (Read the function parameter of the Slave)	Parameter group	The higher byte data	The byte is parameter number		empty
	F	00H	0~66		
	U	01H	0~15		
	H	02H	0~34		
	0	03H	0~20		
	C	04H	0~5		
	d	05H	0~3		
	P	06H	0~8		
	y	07H	0~18 NOTE 1		
	b	08H	0~17		
	A	09H	0~15		
02H (Set the function parameter of the Slave)	Parameter group	The higher byte data	The byte is parameter number		setting data
	F	00H	0~66		
	U	01H	0~15		
	H	02H	0~34		
	0	03H	0~20		
	C	04H	0~5		
	d	05H	0~3		
	P	06H	0~8		
	y	07H	0~18 ${ }^{\text {NOTE } 1}$		
	b	08H	0~17		
03H (Read the fault history record)	Fault reco	d data	Fault inquiry content	data	empty
	fault history record	00H	Fault Style NOTE 3	00H	
	fault history record	01H	Output frequency	01H	
	fault histo record 3	02H	Output current	02H	
	fault histo record	03H	Output voltage	03H	
	fault histo record	04H	Running style ${ }^{\text {NOTE }} 2$	04H	
04H (Read the running State of the slave)	empty		empty		empty

Appendix 1. PI7000 RS485 COMMUNICATION PROTOCOL

05H (Set the function parameter of the Slave +EEPROM)	Parameter group	The higher byte data	The byte is parameter number	The setting data
	F	00H	0~66	
	U	01H	0~15	
	H	02H	0~34	
	0	03H	0~20	
	C	04H	0~5	
	d	05H	0~3	
	P	06H	0~8	
	y	07H	0~18 ${ }^{\text {NOTE } 1}$	
	b	08H	0~17	

For the slave responsion, command index and responsion are made up of double byte
When sending, takes apart the command index and responsion data to higher 4 bits and lower 4 bit, and converts to ASCII code, then sends higher 4 bits firstly. For example:
If the double byte of the command index is 010Ah, then the data is sent in the following order: $0^{\prime}=30 \mathrm{H},{ }^{\prime} 1=31 \mathrm{H},{ }^{\prime} 0^{\prime}=30 \mathrm{H}, \mathrm{A}^{\prime}=41 \mathrm{H}$
If the double byte of responsion data is 01 F 4 h , then the data is sent in the following order:' 0 ' $=30 \mathrm{H},{ }^{\prime} 11^{\prime}=31 \mathrm{H},{ }^{\prime} F^{\prime}=46 \mathrm{H},{ }^{\prime} 4$ ' $=34 \mathrm{H}$

The data format of the slave responsion

Command code	The higher byte of command index		The lower byte of command index		The double bytes of setting data
OOH (Control the slave running)	OOH		Running command	data	empty
			FWD	00H	
			REV	01H	
			STOP/RESET	02H	
			JOG	03H	
			FORCE STOP	04H	
01H (Read the function parameter of the Slave)	Parameter group	The higher byte data	The byte is parameter number		The value of the inquired parameter
	F	00H	0~66		
	U	01H	0~15		
	H	02H	0~34		
	0	03H	0~20		
	C	04H	0~5		
	d	05H	0~3		
	P	06H	0~8		
	y	07H	0~18 ${ }^{\text {NOTE } 1}$		

APPENDIX 1. PI7000 RS485 COMMUNICATION PROTOCOL

	b	08H	0~17		
	A	09H	0~15		
02H (Set the function parameter of the Slave)	Parameter group	The higher byte data	The byte is parameter number		setting data
	F	00H	0~66		
	U	01H	0~15		
	H	02H	0~34		
	0	03H	0~20		
	C	04H	0~5		
	d	05H	0~3		
	P	06H	0~8		
	y	07H	0~18 ${ }^{\text {NOTE } 1}$		
	b	08H	0~17		
03H (Read the fault history record)	Fault record	d data	Fault inquiry content	data	The content of the inquired fault
	fault history record 1	y 00 H	Fault style ${ }^{\text {NOTE } 3}$	00H	
	fault history record 2	y 01H	Output frequency	01H	
	fault history record 3	y $02 H$	Output current	02H	
	fault history record 4	y 03 H	Output voltage	03H	
	fault history record 5	y 04 H	Running style ${ }^{\text {NOTE2 }}$	04H	
04H (Read the running State of the slave)	empty		empty		$\text { data }_{\text {16bit }}^{\text {NOTE2 }}$
05H (Set the function parameter of the Slave +EEPROM)	Parameter group	The higher byte data	The byte is parameter number		The setting data
	F	00H	0~66		
	U	01H	0~15		
	H	02H	0~34		
	0	03H	0~20		
	C	04H	0~5		
	d	05H	0~3		
	P	06H	0~8		
	y	07H	$0 \sim 18$ NOTE 1		
	b	08H	0~17		

NOTE 1:

	01H reading operation			02H writing operation	
y00 restore factory setting	return 0			invalid operation	
$\begin{aligned} & \text { y01~y05 } \\ & \text { fault history } \\ & \text { record } \end{aligned}$	empty record		00H	invalid operation	
	new record		01H		
	affirmed record		02H		
$\begin{aligned} & \text { y06 } \\ & \text { restore fault } \\ & \text { record } \end{aligned}$	return 0			invalid operation	
y09 Product series	70	0	3	invalid operation	
	Family serial	Function code	Input voltage level		
	The no. should be decimalization				
y17 Controller decode	decoded state	FFH		decoded state	Void operation
	locked state	error password input times		locked state	password input times
y18 Controller input the password	decoded state	FFH		decoded state	input password
	locked state	00H		locked state	$\begin{gathered} \text { void } \\ \text { operation } \end{gathered}$

NOTE 2:

BIT	15 BIT	14 BIT	13 BIT	12 BIT
meaning	current limit function 0:invalid 1:valid	OU stall protection 0:invalid 1:valid	reserved	0 : no fault 1: fault occurs
BIT	11 BIT	10 BIT	9 BIT	8 BIT
meaning	000:new fault is saved in fault record 5 001:new fault is saved in fault record 1 010:new fault is saved in fault record 2 011 :new fault is saved in fault record 3 100:new fault is saved in fault record 4			$\begin{aligned} & \text { 0: no JOG } \\ & \text { running } \\ & \text { 1: JOGG } \\ & \text { running } \end{aligned}$
BIT	7 BIT	6 BIT	5 BIT , 4 BIT	
meaning	Lower limit frequency arrive or not 0:no 1:yes	Upper limit frequency arrive or not 0:no 1:yes	running state 00 :stopping 10:decelerating 01:accelerating 11:running in a even speed	
BIT	3 BIT	2 BIT	1 BIT	0 BIT
meaning	direction state 0:reverse 1 :forward	direction command 0 :reverse 1 :forward	reserved	running command 0 : stop 1 : running

NOTE 3: fault style code

serial number	LED display	fault message
0	OC_C	OC signal from current self-inspected citcuit impact
1	OCFA	OC signal from drive circuit
2	OC_2	Output over current,and current exceed 1.5~3 times of motor's rated current (G/S: 2; F: 1.5; Z/M/T: 2.5;H:3)
3	OU	over voltage
4	OL	over load
5	PH_O	phase open
6	OH	over heat
7	LU	Iower voltage
8	UL	Iower load
9	EEPr	EEPROM error
10	OC_P	IGBT power driver protect and produce hardware
interrupt		
11	E_FL	extern fault
12	PG	PG error
13	PID	PID regulation fault
14	DATE	Time limit fault

5: Check sum

Data meanings: data frame check sum, using the lower byte of the double bytes. When sending, takes apart lower byte of check sum to higher 4 bits and lower 4 bit, and convert to ASCII code, then sends higher 4 bits firstly.
For example: If the double byte of the check sum is 024 BH , then the data is sent in the following order: ' 4 ' $=34 \mathrm{H}$, ' B ' $=42 \mathrm{H}$
Check sum=higher 4 bits ASCII code of the slave address
+lower 4 bits ASCII code of the slave address
+higher 4 bits ASCII code of the host command +lower 4 bits ASCII code of the host command
+higher 4 bits ASCII code of the higher byte of the command index +lower 4 bits ASCII code of the higher byte of the command index +higher 4 bits ASCII code of the lower byte of the command index +lower 4 bits ASCII code of the lower byte of the command index +higher 4 bits ASCII code of the higher byte of the setting data +lower 4 bits ASCII code of the higher byte of the setting data +higher 4 bits ASCII code of the lower byte of the setting data +lower 4 bits ASCII code of the lower byte of the setting data
For example: the current running frequency of the slave set by the host is 58.00 Hz , and the slave address is 08 H . If the setting is successful and the communication is normal, the host command and slave responsion express as following:

APPENdIX 1. PI7000 RS485 communication protocol

The host command

=7EH+"08H"+"02H"+"00H"+"02H"+"16H"+"A8H"+"6CH"+0DH
The check sum
$=30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+31 \mathrm{H}+36 \mathrm{H}+41 \mathrm{H}+38 \mathrm{H}$ $=026 \mathrm{CH}$
The sent data by the host
$=7 \mathrm{EH}$
$+30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+31 \mathrm{H}+36 \mathrm{H}+41 \mathrm{H}+38 \mathrm{H}$ $+36 \mathrm{H}+43 \mathrm{H}$ +0DH
The slave responsion $=7 \mathrm{EH}+$ "08H"+"02H"+"00H"+"02H"+"16H"+"A8H"+"6CH"+0DH
The check sum
$=30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+31 \mathrm{H}+36 \mathrm{H}+41 \mathrm{H}+38 \mathrm{H}$ $=026 \mathrm{CH}$
The slave responsion data
$=7 \mathrm{EH}$
$+30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+31 \mathrm{H}+36 \mathrm{H}+41 \mathrm{H}+38 \mathrm{H}$ $+36 \mathrm{H}+43 \mathrm{H}$ $+0 \mathrm{DH}$

6: The security of data

I The data package is checked by means of LRC to ensure the security of data.
I The communication module is completely isolated to ensure communication security, and support hot insert-draw. When the module is connected successfully, system comes to the normal work
I Data frame ensures the system receive correctly by using frame head and frame end. The data in the same frame, the time slot between two bytes that the slave can receive is no more than 300 ms .
1 The system is tested in 6 kinds of baud rate: $0: 1200,1: 2400, \quad 2: 4800$ 3:9600, 4:19200, 5:38400
But in the bad situation, system improve the quality of the communication by reducing the baud rate
I The time that the inverter spends dealing with a frame is less than 100 ms .

5. Example of communication protocol:

Example 1: control the slave running

The host controls NO 8 inverter running forward, and in the normal situation, the host command and slave responsion expresses as following:
Host command=7EH+"08H"+"00H"+"00H"+"00H"+"88H"+0DH
Note: The italic is the check code, gained by the calculation of the check num.
Check num $=30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}=0188 \mathrm{H}$
The data sent by the host $=7 \mathrm{EH}$
$+30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}$
$+38 \mathrm{H}+38 \mathrm{H}$
+0DH

APPENDIX 1. PI7000 RS485 COMMUNICATION PROTOCOL
The data response by the slave=7EH+"08H"+"00H"+"00H"+"00H"+"88H"+0DH
Note: The italic is the check code, gained by the calculation of the check num.
Check sum $=30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}=0188 \mathrm{H}$
The data sent by the slave $=7 \mathrm{EH}$

$$
\begin{aligned}
& +30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H} \\
& +38 \mathrm{H}+38 \mathrm{H} \\
& +0 \mathrm{DH}
\end{aligned}
$$

Example 2: reading the function parameters of the slave

The host reads the setting frequency of NO 8 slave, and if the communication is normal, the host command and the slave responsion can express as following:
The host command=7EH+"08H"+"01H"+"00H"+"02H" +"8BH" +0DH
Note: The italic is the check code, gained by the calculation of the check num.
Check sum $=30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+31 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}=\underline{018 B H}$
The data sent by the host $=7 \mathrm{EH}$

$$
\begin{aligned}
& +30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+31 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H} \\
& +38 \mathrm{H}+42 \mathrm{H} \\
& +0 \mathrm{DH}
\end{aligned}
$$

If the setting frequency of the slave is 0.00 , the slave responsion is: $7 \mathrm{EH}+08 \mathrm{H} "+$ "01H"+"00H"+"02H"+"00H"+"00H"+"4BH"+0DH
Note: ' 00 H ', ' 00 H ' is the higher bits and lower bits of hex number of 0.00
Check num $=30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+31 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}$ $=\underline{024 B H}$
The data sent by the slave=7EH
$+30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+31 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}$ $+34 \mathrm{H}+42 \mathrm{H}$
$+0 \mathrm{DH}$
Example3: Set the function parameter of the slave
If the frequency setting mode of the slave set by the host is "raise and fall control" and the communication is normal, the host command and the slave responsion can express as following:
The host command $=7 \mathrm{EH}$
+"08H"+"02H"+"00H"+"04H"+"00H"+"04H"+"52H"+0DH
Note: The italic is the check code, gained by the calculation of the check num. Check num $=30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+34 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+34 \mathrm{H}$ $=0252 \mathrm{H}$
The data sent by the host=7EH
$+30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+34 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+34 \mathrm{H}$
$+35 \mathrm{H}+32 \mathrm{H}$
+0DH
The slave responsion
$=7 \mathrm{EH}+" 08 \mathrm{H} "+02 \mathrm{H} "+00 \mathrm{H} "+04 \mathrm{H} "+00 \mathrm{H} "+04 \mathrm{H} "+" 52 \mathrm{H} "+0 \mathrm{DH}$
Note: The italic is the check code, gained by the calculation of the check num.
Check sum $=30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+34 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+34 \mathrm{H}$ $=0252 \mathrm{H}$
The sent data by the slave $=7 \mathrm{EH}$
$+30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+34 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+34 \mathrm{H}$
$+35 \mathrm{H}+32 \mathrm{H}$

+0DH

Example 4: read the history fault record

If the host reads the fault style of history record 2 of the No. 8 slave and the communication are normal, the host command and the slave response expresses as following:
The host command $=7 \mathrm{EH}+$ " $08 \mathrm{H} "+" 03 \mathrm{H} "+" 01 \mathrm{H} "+" 00 \mathrm{H} "+$ " $8 \mathrm{CH} "+0 \mathrm{DH}$
Note: The italic is the check code, gained by the calculation of the check num.
Check sum $=30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+33 \mathrm{H}+30 \mathrm{H}+31 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}=\underline{018 \mathrm{CH}}$
The data sent by the host =7EH
$+30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+33 \mathrm{H}+30 \mathrm{H}+31 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}$
$+38 \mathrm{H}+43 \mathrm{H}$
+0DH
If the fault style of history record is "over current 200% ", the slave responses as following:
The responsion of the slave=7EH
+"08H"+"03H"+"01H"+"00H"+"00H"+"02H"+"4EH"+0DH
Note: The italic is the check code, gained by the calculation of the check num.
Check sum $=30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+33 \mathrm{H}+30 \mathrm{H}+31 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}$ $=024 \mathrm{EH}$
The data sent by the slave $=7 \mathrm{EH}$
$+30 \mathrm{H}+38 \mathrm{H}+30 \mathrm{H}+33 \mathrm{H}+30 \mathrm{H}+31 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+32 \mathrm{H}$
$+34 \mathrm{H}+45 \mathrm{H}$
$+0 \mathrm{DH}$

Appendix 2. PG Instruction

1. $7 \mathrm{~K}-\mathrm{PG}$ installation

2. 7K-PG direction

7K-PG could be used with almost all encoders. Using 7K-PG should adjust the PG parameters according to the encoder's output mode. The followings should be adjusted:
is Short circuit of J4, J5, J6
is R1,R2,R3 value.
it Connection of terminal
According to the encoder's output mode, the adjust mode is as below:

1: Open collector

J4, J5, J6 are short circuited to OC
R1, R2, R3 200 ohm.
Terminal connection: A->A+, B->B+, Z->Z+

2: Line driver

J4, J5, J6 are short circuited to LD
R1, R2, R3 200 ohm
Terminal connection: $A_{+}->A_{+}, B_{+}->B_{+}, Z_{+}->Z_{+}$
A- ->A-, B- ->B-, Z- ->Z-

3: Complementary

J4, J5, J6 are short circuited to OC
R1, R2, R3 values depend on the complementary resistors.

Terminal connection: A ->A+, B ->B+, Z ->Z+

4: Voltage

J4, 45, J6 are short circuited to OC
R1, R2, R3 values depend on the complementary resistors.
Terminal connection: A ->A+, B ->B+, Z ->Z+

J4/J5/J6 position and short circuit instruction:

Terminals function description:

Terminal	Function
A+ A- , B+ B- , Z+ Z-	Encoder input signal (Select the right short circuit way according to encoder's output mode)
+5 V	Encoder power supply
V 0	Encoder earthing

Terminals short circuit description:

1. Open collector, complementary and voltage

2. Line driver

Appendix 3. Converter water supply controller instruction

1. Application

It is special appendix for multiple pumps, which run with PI7000 family inverter to control the multiple pumps water supply system effectively.
2. Operation and connection notice:
\diamond If it is power frequency motor, probable thermal relay must be used to protect motor.
\diamond AC contactor with machinery chain equipment should be used between the power frequency bypass and inverter output of aside the motor, lock logically on the electri control circuit to avoid the short circuit of the power frequency and inverter output which damage the inverter and equipments.
\diamond The phase order of the power frequency to the motor should be the same with the phase order of the inverter output to avoid the motor reverse. Please confirm the phase order and operate.
\diamond When wiring the control signal of the inverter, please leave it away with the driving line, and do not make them in the same wire, otherwise it will lead wrong action.
$\diamond \quad$ Screen cable is used for Pressure set signal and pressure feedback signal.
3. Dimension
3.1 Dimension of water supply control card

3.2 Dimension of water supply controller

the size of fixed plate

4. Connection of water supply controller with inverter

4.1 Istall RS485 on the control card, the installation of the RS485 is showed below: 7K-RS485_S with 7KLCB

7K-RS485 With 7KSCB

Connection of water supply controller with inverter, the communniction cable and power cable are connected as below:

5. System diagram

6. Water supply control mode

When several pumps supply water meanwhile, because of the different time(daytime and night), different season(winter and summer), the variation of the water flow is great. To save energy and protect the equipment, please run pumps as many as you need and stop pumps as many as you do not need.

Inverter will confirm the number of the running pumps according to the requirement of the pressure close loop control. In the set range, only one pump is controlled by the inverter at the same time.

If the timing shift interval time is set $0.05 \sim 100.00$, when the related running time is stable, inverter inverter will shift up the pumps according to stop first or open first to ensure each pump has the chance to run and avoid the pump rusted because of long time no use.

After the pumps run to the upper and lower, arrive the adding pumps or reducing pumps time, inverter will add or redcue the pumps according to stop first or open first to ensure each pump can run and avoid the pump rusted because of long time no use.

7. Water supply instruction

Example: 4 pumps water supply in constant pressure.

1) Pumps: 4 convert pumps 15 kW
2) Set pressure: 0.8 Mpa
3) Pressure gage selection: pressure sensor, DC $4 \sim 20 \mathrm{~mA}$ output, 1.6 Mpa 4) Inverter selection: PI7800 015F3 and WSC_RS485 water supply control card
4) Connections of hardware

5) Parameters setting

Item	Settings	Description
F61	11	4 pumps supply water under constant pressure
F04	7	Frequency setting mode is PID
P00	10	PID
P01	100	Output frequency limit
P02	1	Feedback signal selection: external terminal IF: $4 \sim$ 20 mA
P03	3	Getting signal from keyboard input
P04	50.0%	Key set signal: $50.0 \%=0.8 M p a / 1.6 M p a \times 100 \%$
P05	0.25 s	PID integral time (PID parameters depend on the

Appendix 3. Converter water supply controller instruction

P06		0.000
P07	100	PID differential time
P08	300.0 s	PID proportion gain
C00	10 ms	PID fault detect time(larger than detect time of pumps
C01	C01,C02 For energy saving running in the control system and adjusting the water pressure in the water supply system, invalid in the multi pumps.	Start pressure percentage
C02	Stop pressure percentage	
C03	10%	Max allowable deviation
C04	80%	High pressure arrived value
C05	60%	Low pressure arrived value
d00	200 hour	Timing to supply water:200hour, timingfunction deleted
d01	5 hour	Timing shift alternation time
d02	0.5 s	Electromagnetism on/off action delay
d03	100 s	Pumps shift judging time

